liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Instrumental Variable Approach to Array Processing in Spatially Correlated Noise Fields
Polytechnic Institute of Bucharest, Romania.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
1991 (English)Report (Other academic)
Abstract [en]

High-performance signal parameter estimation from sensor array data is a problem which has received much attention. A number of so-called eigenvector (EV) techniques such as MUSIC, ESPRIT, WSF, and MODE have been proposed in the literature. The EV techniques for array processing require knowledge of the spatial noise correlation matrix that constitutes a significant drawback. A novel instrumental variable (IV) approach to the sensor array problem is proposed. The IV technique relies on the same basic geometric properties as the EV methods to obtain parameter estimates. However, by exploiting the temporal correlation of the source signals, no knowledge of the spatial noise covariance is required. The asymptotic properties of the IV estimator are examined and an optimal IV method is derived. Computer simulations are presented to study the properties of the IV estimators in samples of practical length. The proposed algorithm is also shown to perform better than MUSIC on a full-scale passive sonar experiment.

Place, publisher, year, edition, pages
Linköping: Linköping University , 1991.
Series
LiTH-ISY-I, ISSN 8765-4321 ; 1266
Keyword [en]
Acoustic signal processing, Array signal processing, Correlation theory, Eigenvalues, Noise, Parameter estimation
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-95846OAI: oai:DiVA.org:liu-95846DiVA: diva2:638309
Available from: 2013-07-29 Created: 2013-07-29 Last updated: 2013-07-29

Open Access in DiVA

No full text

By organisation
Automatic ControlThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf