liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On chaos in Lotka-Volterra systems: an analytical approach
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, The Institute of Technology.
External - unknown .
2013 (English)In: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 26, no 8, 2299-2314 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we study Lotka-Volterra systems with N species and n resources. We show that the long time dynamics of these systems may be complicated. Depending on parameter choice, they can generate all types of hyperbolic dynamics, in particular, chaotic ones. Moreover, Lotka-Volterra systems can generate Lorenz dynamics. We state the conditions on the strong persistence of Lotka-Volterra systems when the number of resources is less than the number of species.

Place, publisher, year, edition, pages
London Mathematical Society / Institute of Physics: Hybrid Open Access , 2013. Vol. 26, no 8, 2299-2314 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-96416DOI: 10.1088/0951-7715/26/8/2299ISI: 000321954900007OAI: oai:DiVA.org:liu-96416DiVA: diva2:641957
Note

Funding Agencies|Linkoping University||Russian Ministry of Education|2012-1.2.1-12-000-1013-016|Swedish Research Council||

Available from: 2013-08-20 Created: 2013-08-19 Last updated: 2017-12-06

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kozlov, Vladimir

Search in DiVA

By author/editor
Kozlov, Vladimir
By organisation
Mathematics and Applied MathematicsThe Institute of Technology
In the same journal
Nonlinearity
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 177 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf