Background: Monitoring the trafficking of specific cell populations within lymphatics could improve our understanding of processes such as transplant rejection and cancer metastasis. Current methods, however, lack appropriate image resolution for single-cell analysis or are incompatible with in vivo and longitudinal monitoring of lymphatics in their native state. We therefore sought to achieve high-resolution live imaging of the dynamic behavior of cells within lymph vessels in the rat cornea.
Methods/Results: Inflammatory angiogenesis was induced by suture placement in corneas of Wistar rats. Pre- and up to 3 weeks post-induction, corneas were noninvasively examined by laser-scanning in vivo corneal confocal microscopy (IVCM) using only endogenous contrast. Lymph vessels and the cells harbored therein were documented by still images, real-time video, and 3D confocal stack reconstruction of live tissue. In vivo, conjunctival and corneal lymphatics were morphologically distinct, those with corneal location being one-quarter the diameter of those in the conjunctiva (p<0.001). Cells were recruited to initially empty pre-existing lymph vessels during the first day of inflammation and maintained a dense occupation of vessels for up to 7 days. A diverse population of cells (diameter range: 1.5–27.5 μm) with varying morphology was observed, and exhibited variable flow patterns and were transported singly and in clusters of at least 2–9 adherent cells.
Conclusions: The in vivo microscopic technique presented enables lymph vessels and cell trafficking to be studied in high resolution in a minimally-perturbed physiologic milieu.