liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ytterbium oxide formation at the graphene-SiC interface studied by photoemission
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
2013 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 31, no 2Article in journal (Refereed) Published
Abstract [en]

Synchrotron-based core level and angle resolved photoemission spectroscopy was used to study the formation of ytterbium (Yb) oxide at the graphene-SiC substrate interface. Oxide formation at the interface was accomplished in two steps, first intercalation of Yb into the interface region and then oxygen exposure while heating the sample at 260 degrees C to oxidize the Yb. After these processes, core level results revealed the formation of Yb oxide at the interface. The Yb 4f spectrum showed upon oxidation a clear valence change from Yb2+ to Yb3+. After oxidation the spectrum was dominated by emission from oxide related Yb3+ states and only a small contribution from silicide Yb2+ states remained. In addition, the very similar changes observed in the oxide related components identified in the Si 2p and Yb 4f spectra after oxidation and after subsequent heating suggested formation of a Si-Yb-O silicate at the interface. The electronic band structure of graphene around the (K) over bar -point was upon Yb intercalation found to transform from a single pi band to two pi bands. After Yb oxide formation, an additional third pi band was found to appear. These pi bands showed different locations of the Dirac point (E-D), i.e., two upper bands with E-D around 0.4 eV and a lower band with E-D at about 1.5 eV below the Fermi level. The appearance of three pi-bands is attributed to a mixture of areas with Yb oxide and Yb silicide at the interface.

Place, publisher, year, edition, pages
American Vacuum Society , 2013. Vol. 31, no 2
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-96491DOI: 10.1116/1.4792040ISI: 000315595700006OAI: oai:DiVA.org:liu-96491DiVA: diva2:642860
Available from: 2013-08-23 Created: 2013-08-20 Last updated: 2017-12-06

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Watcharinyanon, SomsakulJohansson, Leif I.Xia, ChaoVirojanadara, Chariya

Search in DiVA

By author/editor
Watcharinyanon, SomsakulJohansson, Leif I.Xia, ChaoVirojanadara, Chariya
By organisation
Semiconductor MaterialsThe Institute of Technology
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf