liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High frequency of functional extinctions in ecological networks
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
2013 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 499, no 7459, p. 468-+Article in journal (Refereed) Published
Abstract [en]

Intensified exploitation of natural populations and habitats has led to increased mortality rates and decreased abundances of many species(1,2). There is a growing concern that this might cause critical abundance thresholds of species to be crossed(1,3-5), with extinction cascades and state shifts in ecosystems as a consequence(4,6,7). When increased mortality rate and decreased abundance of a given species lead to extinction of other species, this species can be characterized as functionally extinct even though it still exists. Although such functional extinctions have been observed in some ecosystems(3,4,8), their frequency is largely unknown. Here we use a new modelling approach to explore the frequency and pattern of functional extinctions in ecological networks. Specifically, we analytically derive critical abundance thresholds of species by increasing their mortality rates until an extinction occurs in the network. Applying this approach on natural and theoretical food webs, we show that the species most likely to go extinct first is not the one whose mortality rate is increased but instead another species. Indeed, up to 80% of all first extinctions are of another species, suggesting that a species ecological functionality is often lost before its own existence is threatened. Furthermore, we find that large-bodied species at the top of the food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend strong support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than on mere persistence(8-11).

Place, publisher, year, edition, pages
Nature Publishing Group , 2013. Vol. 499, no 7459, p. 468-+
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-96709DOI: 10.1038/nature12277ISI: 000322157900038OAI: oai:DiVA.org:liu-96709DiVA, id: diva2:642972
Note

Funding Agencies|Linkoping University||

Available from: 2013-08-23 Created: 2013-08-23 Last updated: 2018-02-18
In thesis
1. Functional Extinctions of Species in Ecological Networks
Open this publication in new window or tab >>Functional Extinctions of Species in Ecological Networks
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Current rates of extinctions are estimated to be around 1000 times higher than background rates that would occur without anthropogenic impacts. These extinction rates refer to the traditional view of extinctions, i.e. numerical extinctions. This thesis is about another type of extinctions: functional extinctions. Those occur when the abundance of a species is too small to uphold the species’ ecologically interactive role. I have taken a theoretical approach and used dynamical models to investigate functional extinctions and threshold values for species’ mortality rates in ecological networks. More specifically, I have derived threshold values for focal species mortality rates at which another species or the focal species itself goes numerically extinct (Paper I-II), or transgresses some predefined threshold abundance (Paper III). If an increased mortality rate of a focal species causes another species to go numerically extinct, the focal species can be regarded as functionally extinct, since its abundance is no longer large enough to uphold its ecologically interactive role. Such functional extinctions are investigated in the first papers (Paper I-II). In the following paper, limits for both increased and decreased mortality rates of species are explored (Paper III). Paper III also extends the basic theoretical idea developed in paper I-II into a more applied setting. In this paper I develop a time series approach aimed at estimating fishing mortalities associated with a low risk that any species in a community transgresses some predefined critical abundance threshold. In the last paper (Paper IV) the community wide effect of changes in the abundance of species is investigated.

In the first paper (Paper I) I investigate threshold levels for the mortality rate of species in ecological networks. When an increased mortality rate of a focal species causes another species to go extinct, the focal species can be characterized as functional extinct, even though it still exists. Such functional extinctions have been observed in a few systems, but their frequency and general patterns have been unexplored. Using a new analytical method the patterns and frequency of functional extinctions in theoretical and empirical ecological networks are explored. It is found that the species most likely to be the first to go extinct is not the species whose mortality rate is increased, but instead another species in the network. The species which goes extinct is often not even directly linked to the species whose mortality rate is increased, but instead indirectly linked. Further, it is found that large-bodied species at the top of food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than the mere persistence of species.

In Paper II I use the approach developed in Paper I to explore the frequency and patterns of functional extinctions in ecological networks with varying proportions of mutualistic and antagonistic (predator-prey) interactions. The general results from Paper I are also found in Paper II; that is, an increased mortality rate of one focal species often first leads to an extinction of another species rather than to an extinction of the focal species itself.

Further, the frequency of functional extinctions is higher in networks containing a mixture of interaction types than in networks with only antagonistic interactions. Overall, this study generalize the findings of paper I for networks containing a variety of interaction types.

To make the theoretical approaches developed in paper I-II operational in a management setting I develop a time series approach aimed at estimating ecologically sustainable fishing mortalities in a multispecies fisheries context (Paper III). An ecologically sustainable fishing mortality is here defined as a long-term fishing mortality associated with a multispecies objective which infers a low risk that any species, either the focal species itself or another species, in a community transgresses a critical biomass limit, below which the risk of recruitment failure is high. The approach is exemplified using a statistical food web model of the dominating fish stocks in the Baltic Sea. For the most abundant fish stock a counterintuitive result is found; it is more likely that the multispecies objective is met if its mortality caused by fishing is increased compared to if it is decreased. Further, simultaneous changes of the fishing mortality of a number of interacting species in the food web model shows a much narrower region of possible sustainable fishing mortalities than a single species approach, something that is not captured by current stock assessment models. Altogether these results are governed by indirect effects propagating in the community and pinpoints the need to adopt community dynamical approaches in fisheries management.

The population sizes of many species in the world are declining. Negative population trends are particular pronounced in large-bodied herbivores and carnivores, species known to play important regulatory roles in many ecosystems. Although this indicates that the ecological consequence of declining populations of species might be profound, its impact on ecosystem stability remains largely unexplored. In paper IV it is therefore explored how declining populations of rare and common species affects the resilience – recovery rate – of ecological networks. An analytical approximation shows that network resilience is a function of the harmonic mean of the species’ abundances. This means that network resilience is especially sensitive to declining abundances of rare species. Consistent with this analytically derived result, a clear and positive relationship between resilience and the abundance of the rarest species in a broad spectrum of dynamical models of ecological networks is found. Together these results illustrate the potentially negative consequences of declining populations of rare species for the stability of the ecological systems in which they are embedded, and provide ecological arguments for the protection and management of rare species.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. p. 30
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1757
Keyword
Functional extinctions; Extinctions; Fisheries management; Ecologically Effective Population sizes
National Category
Ecology
Identifiers
urn:nbn:se:liu:diva-127148 (URN)10.3384/diss.diva-127148 (DOI)978-91-7685-785-4 (ISBN)
Public defence
2016-05-20, Plank, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2016-04-19 Created: 2016-04-15 Last updated: 2016-04-19Bibliographically approved
2. Quantifying Risk in Epidemiological and Ecological Contexts
Open this publication in new window or tab >>Quantifying Risk in Epidemiological and Ecological Contexts
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The rates of globalization and growth of the human population puts ever increasing pressure on the agricultural sector to intensify and grow more complex, and with this intensification comes an increased risk of outbreaks of infectious livestock diseases. At the same time, and for the same reasons, the detrimental effect that humans have on other species with which we share the environment has never been more apparent, as the current rates of species loss from ecological communities rival those of ancient mass extinction events. In order to find ways to lessen the effects of and eventually solve such problems we need ways to quantify the risks involved, something that can be difficult when for instance the sheer size or sensitivity of the systems makes practical experimentation unsuitable. For these situations mathematical models have become invaluable tools due to their flexibility and noninvasiveness. This thesis presents four works involving the quantification of risk in livestock epidemic and ecological contexts using mathematical models. Two of them deal with extinctions of species within model ecological communities, and how species interactions play a role in the identity of the lost species following perturbations to specific species (Papers I and II). The other two regard how the spatial layout of the underlying population of livestock premises affect the risk of foot and mouth disease outbreaks among farms in the USA, and how models of such outbreaks can be optimized to improve their usefulness (Papers III and IV).

Ecological communities consist of species and the often intricate pattern of interactions between them. These interspecies connections can propagate effects caused by disturbances in one end of the network, through the community via the links, to other parts of the network. In some cases, a reduction in the abundance of one species can cause the extinction of a second species before the first species disappears, something called functional extinction. Despite this, many conservation efforts revolve around simply keeping populations of single species at a high enough level for their own survival. In a model setting, the study of Paper I explores and attempts to quantify how common such functional extinctions are in relation to the alternative outcome that a perturbed species itself becomes extinct. This is done by first constructing stable model food webs describing predator-prey interactions of up to 50 species, parameterized through allometric relationships between metabolic processes and body size. Then the smallest amount of extra mortality that can be applied to each and every species in the web before any species become extinct is determined. The study shows that in these model communities, more often than not (>80%) another species, rather than the species that is subjected to the additional mortality will be the one to become extinct first.

The approach of Paper I is taken further in Paper II by applying the same methodology to ecological networks that include mixtures of both antagonistic (predator-prey) and mutualistic (e.g. pollination and seed dispersal) interactions. The results further reinforce the findings of Paper I, and show that ecological networks containing a mixture of antagonistic and mutualistic interactions are more sensitive to functional extinctions than purely antagonistic or purely mutualistic ones, an important finding considering the diversity of interaction types in natural systems. Furthermore, the type of species found to have the lowest threshold before becoming functionally extinct were those with a mixture of interaction types, such as pollinating insects. Both Paper I and II consolidate the notion that when doing conservation work it is important to have the entire community in mind by considering the population sizes that are viable from a multi-species perspective, rather than just focusing on the minimum population sizes that are viable for the individual species.

In Papers III and IV the focus changes somewhat, from models of ecological systems to models of how infectious livestock disease spread between farms in spatially explicit contexts. For this kind of model, information about the spatial distribution of the hosts is of course crucial, but not always readily available. In the USA, the only available information about livestock premises demography is aggregated at the county scale, meaning that the spatial distribution of the premises within each county is unknown. However, a method exists to simulate realistic stochastic spatial configurations of premises using a set of predictor variables, such as topology, climate and roads. An alternative approach that have been used previously is to assume a uniformly random spatial distribution of premises within each county. But to what extent does the choice between these two methods affect the model’s evaluation of the risk of disease outbreaks? In Paper III, this is analyzed specifically for foot and mouth disease. Through simulated outbreaks and by looking at the reproductive ratio of the disease, the outbreak dynamics within the two different spatial configurations of premises are compared. The results show that there is a clear difference in the risk of outbreaks between them, with the non-uniform distributions showing a general pattern of higher outbreak risk. However this difference is dependent on the size and geographic location of the county that the outbreak start in with larger counties in the west of the US showing a stronger effect.

When running numerical simulations with large scale models such as the one used in Paper III, a considerable amount of replication is usually necessary in order to account for the high degree of stochasticity inherent to the problem. Even further replication is required when performing sensitivity analyses of model parameters or when exploring different scenarios, for instance when trying to determine the optimal control strategy for a disease. For this reason, the amount and quality of results that can be produced by such studies can quickly become limited by the availability of computational resources. Finding ways to optimize the computations involved with regard to simulation time is therefore of great value as it can be directly related to the robustness of the results. In Paper IV, an efficient optimization method for the kind of kernel-based local disease spread model used in paper III is presented. The method revolves around constructing a grid structure that is overlaid on top of the farm landscape and dividing the infection process into two steps, first evaluating if any farms within one of the grid squares can become infected given an over-estimation of the probability of infection, and then only if so, evaluate actual infection of a subset of the farms within the receiving square. The method is compared to similar published methods and is shown to be more efficient in most cases, while also being easy to implement and understand. Furthermore, while other methods often involve approximations of the transmission process in order to improve computational speed, the method of Paper IV is shown to be exact. This is a major advantage, since with an approximative method the extent to which the results are affected by the simplification is unknown unless the effect of the approximation is explicitly quantified. In most cases, such quantification would require extensive simulations with the unsimplified approach, something which of course may not be feasible.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 34
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1920
National Category
Ecology Other Veterinary Science
Identifiers
urn:nbn:se:liu:diva-145216 (URN)10.3384/diss.diva-145216 (DOI)9789176853405 (ISBN)
Public defence
2018-03-23, Nobel (BL32), B-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2018-02-19 Created: 2018-02-18 Last updated: 2018-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Säterberg, TorbjörnSellman, StefanEbenman, Bo

Search in DiVA

By author/editor
Säterberg, TorbjörnSellman, StefanEbenman, Bo
By organisation
Theoretical BiologyThe Institute of Technology
In the same journal
Nature
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf