liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Yokohama City University, Japan .
Show others and affiliations
2013 (English)In: Nature Structural & Molecular Biology, ISSN 1545-9993, E-ISSN 1545-9985, Vol. 20, no 8, 1008-+ p.Article in journal (Refereed) Published
Abstract [en]

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 angstrom) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBPs concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA , 2013. Vol. 20, no 8, 1008-+ p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-96977DOI: 10.1038/nsmb.2611ISI: 000322715300016OAI: oai:DiVA.org:liu-96977DiVA: diva2:645706
Note

Funding Agencies|Swedish Research Council|621-2011-6028621-2012-5250621-2012-5136|VINNOVA|P32045-1|Swedish Cancer Foundation|11 0681|Swedish Child Cancer Foundation|PROJ09/092|Forum Scientium Award||Canadian Institutes for Health Research|MT-13611|Japan Society for the Promotion of Science|23370077|Knut and Alice Wallenberg foundation||Canada Research Chair||

Available from: 2013-09-05 Created: 2013-09-02 Last updated: 2017-12-06
In thesis
1. Structural biology of transcriptional regulation in the c-Myc network
Open this publication in new window or tab >>Structural biology of transcriptional regulation in the c-Myc network
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The oncogene c-­‐Myc is overexpressed in many types of human cancers and regulation of c-­‐Myc expression is crucial in a normal cell. The intrinsically disordered N-­‐terminal transactivation domain interacts with a wide range of proteins regulating c-­‐Myc activity. The highly conserved Myc box I region includes residues Thr58 and Ser62, which are involved in the phosphorylation events that control c-­‐Myc degradation by ubiquitination. Aggressive cell growth, leading to tumor formation, occurs if activated c-­‐ Myc is not degraded by ubiquitination. Such events may be triggered by defects in the regulated network of interactions involving Pin1 and phospho-­‐dependent kinases.

In this thesis, the properties of the intrinsically disordered unphosphorylated c-­‐Myc1-­‐88 and its interaction with Bin1 are studied by nuclear magnetic resonance (NMR) spectroscopy and surface plasmon resonance (SPR). Furthermore, the interaction of Myc1-­‐88 with Pin1 is analyzed in molecular detail, both for unphosphorylated and Ser62 phosphorylated c-­‐Myc1-­‐88, providing a first molecular description of a disordered but specific c-­‐Myc complex. A detailed analysis of the dynamics and structural properties of the transcriptional activator TAF in complex with TBP, both by NMR spectroscopy and crystallography, provides insight into transcriptional regulation and how c-­‐Myc could interact with TBP. Finally, the structure of a novel N-­‐terminal domain motif in FKBP25, which we name the Basic Tilted Helix Bundle (BTHB) domain, and its binding to YY1, which also binds c-­‐Myc, is described. By investigating the structural and dynamic properties of c-­‐Myc and c-­‐Myc-­‐interacting proteins, this thesis thus provides further insight to the molecular basis for c-­‐Myc functionality in transcriptional regulation.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 70 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1584
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-106185 (URN)10.3384/diss.diva-106185 (DOI)978-­91-­7519‐370‐0 (print) (ISBN)
Public defence
2014-05-23, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2014-04-28 Created: 2014-04-28 Last updated: 2014-04-28Bibliographically approved
2. Structural insights into protein-protein interactions governing regulation in transcription initiation and ubiquitination
Open this publication in new window or tab >>Structural insights into protein-protein interactions governing regulation in transcription initiation and ubiquitination
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Virtually every aspect of the cellular processes in eukaryotes requires that the interactions between protein molecules are well coordinated in different regulatory pathways. Any protein dysfunction involved in these regulatory pathways might lead to various pathological conditions. Understanding the structural and functional peculiarities of these proteins molecular machineries will help in formulating structure-based drug design.

The first regulatory process studied here is the RNA polymerase-II mediated transcription of the eukaryotic protein-coding genes to produce mRNAs. This process requires the formation of the ‘transcription initiation’ by the assembly of Pre-Initiation Complex (PIC) formation at a core promoter region. Regulation at this initiation level is a key mechanism for the control of gene expression that governs cellular growth and differentiation. The transcription Factor IID (TFIID) is a conserved multiprotein general transcription factor with an essential role in  nucleating the PIC formation, composed of TATA Binding Protein (TBP) and about 14 TBP Associated Factors (TAFs). The here presented crystal structure (1.97Å) of TBP bound to TAND1 and TAND2 domains from TAF1 reveals a detailed molecular pattern of interactions involving both transcriptionally activating and repressing regions in TBP, thereby uncovering central principles for anchoring of TBP-binding motifs. Together with NMR and cellular analysis, this work provides the structural basis of competitive binding with TFIIA to modulate TBP in promoter recognition.

In eukaryotes, another fundamental mechanism in the regulation of cellular physiology is the posttranslational modification of substrate proteins by ubiquitin, termed ‘ubiquitination’. Important actors in this mechanism are the ubiquitin-ligases (E3s) that culminate the transfer of ubiquitin to the substrate and govern the specificity of this system. One E3 ligase in particular, TRIM21, defines a subgroup of the Tripartite Motif (TRIM) family, which belongs to the major RING-type of E3 ubiquitin ligases, and plays an important role in pathogenesis of autoimmunity by mediating ubiquitination of transcription factors. The crystal structure (2.86Å) of the RING domain from TRIM21 in complex with UBE2E1, an E2 conjugating enzyme, together with the NMR and SAXS analysis as well as biochemical functional analysis, reveals the molecular basis for the dynamic binding interfaces. The TRIM21 mode of ubiquitin recognition and activation for catalytic transfer of ubiquitin can be modeled onto the entire TRIM family.

Finally, we explored the concepts of conformational selection in proteins as a possible key component for protein-mediated transcriptional regulation. In this framework, MexR, a bacterial repressor of the MexAB-OprM efflux pump, and its mutant Arg21Trp were studied as an example for proteins presenting different conformations. The residue Arg21Trp mutation is clinically identified to cause of Multi-Drug Resistant (MDR) by attenuated DNA binding, and leads to the overexpression of the MexAB-OprM efflux pump. With the crystal structure (2.19Å) of MexR mutant Arg21Trp, in combination with MD-simulations and SAXS for both wild-type and mutant, we could unravel the atomic details of the wild-type conformations consisting in subsets of populations of DNA bound and unbound forms. Remarkably, the mutant Arg21Trp stabilize the DNA unbound state and shifts MexR in a pre-existing equilibrium, from a repressed to a derepressed state.

Taken together, these studies substantially broaden our knowledge at a molecular level in protein interactions that are involved in transcriptional regulation and ubiquitination, studied by a carefully selected combination of complementary structural methods spanning different resolutions and time scales.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 73 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1694
National Category
Chemical Sciences Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-122468 (URN)10.3384/diss.diva-122468 (DOI)978-91-7685-984-1 (ISBN)
Public defence
2015-12-04, Planck, Fysikhuset, Campus Valla, Linköping, 09:30 (English)
Opponent
Supervisors
Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2017-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Anandapadmanaban, MadhanagopalAndrésen, CeciliaHelander, SaraLundström, PatrikSunnerhagen, Maria

Search in DiVA

By author/editor
Anandapadmanaban, MadhanagopalAndrésen, CeciliaHelander, SaraLundström, PatrikSunnerhagen, Maria
By organisation
ChemistryThe Institute of Technology
In the same journal
Nature Structural & Molecular Biology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 380 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf