liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Experimental Design and Updating of Finite Element Models
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
1997 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

This thesis deals with two partly related topics: model updating and actuator/sensor placement concerning finite element (FE) models of large, flexible mechanical structures.

The importance of accurate dynamical FE models of mechanical structures in, e.g., aviation/aerospace applications are steadily increasing. For instance, a sufficient accurate model may reduce the expenses for ground vibration testing and wind-tunnel experiments substantially. It is therefore of high industrial interest to obtain accurate models of flexible structures. One approach is to improve a parameterized, initial FE model using measurements of the real structure, so-called model updating. For a fast, successful model updating, three requirements must be fulfilled. The model updating must be computationally cheap, which requires an efficient model reduction technique. The cost function describing the deviation between the model output and the measurements must have good convexity properties so that an estimation of the parameters corresponding to the global optimum is likely to be obtained. Finally, the optimization methods must be reliable. A novel mode-pairing free cost function is presented, and together with a proposed general procedure for model updating, a cheap model updating formulation with good parameter estimation properties is obtained.

Actuator and sensor placement is a part of the experimental design. It is performed in advance of the vibrational experiment in order to ensure high quality measurements. Using a nominal FE model of the structure, an actuator/sensor placement can be made. Actuator/sensor placement tasks are generally discrete, non-convex optimization problems of high complexity. One is therefore restricted to the use of sub-optimal algorithms in order to fulfill time and memory storage requirements. A computationally cheap algorithm for general actuator/sensor placement objectives are proposed. A generalization of an actuator/sensor placement criterion for model updating, and a novel noise-robust actuator placement criterion for experimental modal analysis are proposed.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 1997. , 134 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 611
National Category
Control Engineering
URN: urn:nbn:se:liu:diva-98110ISBN: 91-7871-928-3 (print)OAI: diva2:652178
Available from: 2013-09-30 Created: 2013-09-30 Last updated: 2013-09-30Bibliographically approved

Open Access in DiVA

No full text

By organisation
Automatic ControlThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 385 hits
ReferencesLink to record
Permanent link

Direct link