liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Sequential Monte Carlo Filters and Integrated Navigation
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
2002 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

In this thesis we consider recursive Bayesian estimation in general, and sequential Monte Carlo filters in particular, applied to integrated navigation. Based on a large number of simulations of the model, the sequential Monte Carlo filter, also referred to as particle filter, provides an empirical estimate of the full posterior probability density of the system. The particle filter provide a solution to the general nonlinear, non-Gaussian filtering problem. The more nonlinear system, or the more non-Gaussian noise, the more potential particle filters have.

Although very promising even for high-dimensional systems, sequential Monte Carlo methods suer from being more or less computer intensive. However, many systems can be divided into two parts, where the first part is nonlinear and the second is (almost) linear conditionally upon the first. By applying the particle filter only on the severly nonlinear part of lower dimension, the computational load can be significantly reduced. For the remaining conditionally (almost) linear partwe apply (linearized) linear filters, such as the (extended) Kalman filter. From a Bayesian point of view, the result from the different filters can be seen as marginal posterior probability densities. The full posterior density is then computed by combining the results from the separate filters using Bayes' rule. The technique of marginalising the complete posterior density and solve the linear parts analytically is referred to as Rao-Blackwellization.

The application considered here is integrated aircraft navigation. Integrated navigation refers to the combination of outputs from two or more navigation sensors to yield a more accurate and reliable overall solution. The sensors we are dealing with are inertial navigation and terrain-aided positioning, meaning that we combine two systems which are high-dimensional and highly nonlinear respectively. The integrated navigation application is a typical system which consists of both linearand nonlinear elements. We show that by applying the efficent particle filter based on Rao-Blackwellization we obtain nearly optimal accuracy for a tractable amount of computational load.

Place, publisher, year, edition, pages
Linköping: Linköping University , 2002. , 102 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 945
National Category
Control Engineering
URN: urn:nbn:se:liu:diva-98163Local ID: LiU-TEK-LIC-2002:18ISBN: 91-7373-344-XOAI: diva2:652328
Available from: 2013-10-09 Created: 2013-09-30 Last updated: 2013-10-09Bibliographically approved

Open Access in DiVA

No full text

By organisation
Automatic ControlThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link