liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Overexpression of enzymatically active human cytosolic and mitochondrial thioredoxin reductase in HEK-293 cells: Effect on cell growth and differentiation
Karolinska Institutet, Huddinge, Sweden.
Karolinska Institutet, Huddinge, Sweden.
Department of Laboratory Medicine, Division of Pathology, F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Sweden.
Department of Laboratory Medicine, Division of Pathology, F46, Karolinska Institutet, Karolinska University Hospital Huddinge, Sweden.
Show others and affiliations
2004 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 279, no 52, 54510-54517 p.Article in journal (Refereed) Published
Abstract [en]

The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.

Place, publisher, year, edition, pages
American Society for Biochemistry and Molecular Biology, 2004. Vol. 279, no 52, 54510-54517 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-98788DOI: 10.1074/jbc.M408494200PubMedID: 15471857OAI: oai:DiVA.org:liu-98788DiVA: diva2:655875
Available from: 2013-10-14 Created: 2013-10-14 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Spyrou, Giannis

Search in DiVA

By author/editor
Spyrou, Giannis
In the same journal
Journal of Biological Chemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf