liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cloning and expression of a novel mammalian thioredoxin
Novum, Karolinska Institutet, Huddinge, Sweden.
Novum, Karolinska Institutet, Huddinge, Sweden.
Novum, Karolinska Institutet, Huddinge, Sweden.
Novum, Karolinska Institutet, Huddinge, Sweden.
1997 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 272, no 5, 2936-2941 p.Article in journal (Refereed) Published
Abstract [en]

We have isolated a 1276-base pair cDNA from a rat heart cDNA library that encodes a novel thioredoxin (Trx2) of 166 amino acid residues with a calculated molecular mass of 18.2 kDa. Trx2 possesses the conserved thioredoxin-active site, Trp-Cys-Gly-Pro-Cys, but lacks structural cysteines present in all mammalian thioredoxins. Trx2 also differs from the previously described rat thioredoxin (Trx1) by the presence of a 60-amino acid extension at the N terminus. This extension has properties characteristic for a mitochondrial translocation signal, and the cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein of 12.2 kDa. Western blot analysis from cytosolic, peroxisomal, and mitochondrial rat liver cell fractions confirmed mitochondrial localization of Trx2. Northern blot and reverse transcriptase-polymerase chain reaction analyses revealed that Trx2 hybridized to a 1.3-kilobase message, and it was expressed in several tissues with the highest expression levels in heart, muscle, kidney, and adrenal gland. N-terminally truncated recombinant protein was expressed in bacteria and characterized biochemically. Trx2 possessed a dithiol-reducing enzymatic activity and, with mammalian thioredoxin reductase and NADPH, was able to reduce the interchain disulfide bridges of insulin. Furthermore, Trx2 was more resistant to oxidation than Trx1.

Place, publisher, year, edition, pages
American Society for Biochemistry and Molecular Biology, 1997. Vol. 272, no 5, 2936-2941 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-98845DOI: 10.1074/jbc.272.5.2936PubMedID: 9006939OAI: oai:DiVA.org:liu-98845DiVA: diva2:655994
Available from: 2013-10-14 Created: 2013-10-14 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Spyrou, Giannis

Search in DiVA

By author/editor
Spyrou, Giannis
In the same journal
Journal of Biological Chemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf