liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tool-Independent Distributed Simulations Using Transmission Line Elements And The Functional Mock-up Interface
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
2013 (English)Conference paper, Published paper (Refereed)
Abstract [en]

This paper describes how models from different simulation tools can be connected and simulated on different processors by using the Functional Mockup Interface (FMI) and the transmission line element method (TLM). Interconnectivity between programs makes it possible to model each part of a complex system with the best suited tool, which will shorten the modelling time and increase the accuracy of the results. Because the system will be naturally partitioned, it is possible to identify weak links and replace them with transmission line elements, thereby introducing a controlled time delay. This makes the different parts of the system naturally independent, making it possible to simulate large aggregated system models with good performance on multi-core processors. The proposed method is demonstrated on an example model. A suggestion of an XML extension to the FMI standard for describing TLM ports is also presented.

Place, publisher, year, edition, pages
2013.
Keywords [en]
Functional Mockup Interface (FMI), Functional Mockup Unit (FMU), Transmission Line Element Method (TLM), Parallelism, Co-Simulation
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-99870OAI: oai:DiVA.org:liu-99870DiVA, id: diva2:658595
Conference
53rd SIMS conference on Simulation and Modelling, October 4-6, Reykjavik, Iceland
Available from: 2013-10-22 Created: 2013-10-22 Last updated: 2015-11-19Bibliographically approved
In thesis
1. Distributed System Simulation Methods: For Model-Based Product Development
Open this publication in new window or tab >>Distributed System Simulation Methods: For Model-Based Product Development
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Distributed system simulation can increase performance, re-usability and modularity in model-based product development. This thesis investigates four aspects of distributed simulation: multi-threaded simulations, simulation tool coupling, distributed equation solvers and parallel optimization algorithms.

Multi-threaded simulation makes it possible to split up the workload over several processing units. This reduces simulation time, which can save both time and money during the product development cycle. The transmission line element method (TLM) is used to decouple models to independent sub-models.

Different simulation tools are suitable for different problems. Tool coupling makes it possible to use the best suited tool for simulating each part of the whole product. Models from different tools can then be coupled into one aggregated simulation model. An emerging standard for tool coupling is the Functional Mock-up Interface (FMI). It is investigated how this can be used in conjunction with TLM.

Equation-based object-oriented languages (EOOs) are becoming increasing popular. A logical approach is to let the equation solvers maintain the same structure that was used in the modelling process. Methods for achieving this using TLM and FMI are implemented and evaluated.

In addition to parallel simulations, it is also possible to use parallel optimization algorithms. This introduces parallelism on several levels. For this reason, an algorithm for profile-based multi-level scheduling is proposed.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. p. 118
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1732
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:liu:diva-122754 (URN)10.3384/diss.diva-122754 (DOI)978-91-7685-875-2 (ISBN)
Public defence
2015-12-18, ACAS, A-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-11-19 Created: 2015-11-19 Last updated: 2019-11-15Bibliographically approved

Open Access in DiVA

fulltext(233 kB)1408 downloads
File information
File name FULLTEXT01.pdfFile size 233 kBChecksum SHA-512
a3243eeadbb2ba1524317f63ee79ef04282b387b96ea4b32d81fe51a42077082cfed22dba3161e15262dee46e9ab2e1dd28e4f0643ec733e1d576c48b0ba70c8
Type fulltextMimetype application/pdf

Other links

Link to the conference page

Authority records

Braun, RobertKrus, Petter

Search in DiVA

By author/editor
Braun, RobertKrus, Petter
By organisation
Fluid and Mechatronic SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1408 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 2752 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf