liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the mechanism of segregation band formation and its influence on the mechanical properties of pressure die cast magnesium alloys
Dept. Mechanical Engineering / Component Technology, Jönköping University.
Dept. Mechanical Engineering / Component Technology, Jönköping University.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Segregation bands which follow the contours of the outer surfaces of the casting are not uncommon in commercial magnesium pressure die castings. The presence of this type of defect has a strong detrimental effect on the mechanical properties. A few models have been proposed which tries to explain mechanisms behind the formation of this type of segregation bands. However, it is difficult to explain some phenomena which occur in real die cast components, using the models previously proposed. In this paper, a new model was suggested which is based on a coupled analysis of heat flow and volume changes during solidification. The formation of segregation bands was related to the pressure drop in the liquid, and the resulting flow of segregated liquid from the surrounding two-phase regions. Methods to prevent or decrease the formation of segregation bands have also been proposed and experimentally verified on real industrial castings. Finally, the influence of this type of defect on the mechanical properties of industrial castings has been studied and is presented in this paper.

National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-100379OAI: oai:DiVA.org:liu-100379DiVA: diva2:661714
Available from: 2013-11-04 Created: 2013-11-04 Last updated: 2013-11-04
In thesis
1. On the microstructure and mechanical properties of Mg-Al alloys
Open this publication in new window or tab >>On the microstructure and mechanical properties of Mg-Al alloys
2004 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The microstructural features and the mechanical properties of binary Mg-Al alloys have been investigated by using a gradient solidification technique. Homogeneous and nearly defect-free samples were produced under well controlled cooling conditions, through which the microstructural characteristics as well as the relationships between microstructure and mechanical properties in Mg-AI alloys were precisely defined.

It was found that the eutectic structure Mg-AI alloys becomes more and more divorced when increasing the cooling rate and by decreasing the AI concentration. A concept called divorced degree is introduced in this work to quantify the divorced level of the alloys, by which other structural parameters can be also quantified, including the eutectic fraction and, solid solution aluminium concentrations in the matrix. Concerning the relation between the microstructure and mechanical properties, it is found that yield strength and hardness are mainly dependent on the structural spacings (grain sizes and dendrite arm spacing, DAS) and solid solution aluminium content in the a-phase. For higher aluminium containing alloys (larger than 10wt% AI) the rigid eutectic networks will also contribute to the strength and hardness. All the microstructural parameters contribute to the ultimate tensile strength (UTS) as well as fracture elongation of the alloys. The premium combination was found in Mg-8AI alloy, where the highest UTS and relatively high elongation can be achieved. Mathematical modeling has been performed to relate the microstructural parameters and casting conditions, such as grain size, volume fraction of different phases, solid solute AI concentration and cooling rate, to the mechanical properties of the alloys, including yield strength, hardness and fracture elongation. The distinguishing differences in the mechanical behaviour between pressure die-cast magnesium alloy components and other casting processes were also investigated. The differences were related to mould constraint in the die during the cooling sequence.

One special and severe defect called segregation band which occurs in die-cast magnesium alloy components has also been investigated. A new theory to describe the segregation band formation mechanism during die casting has been proposed in this work. The tensile stresses built up in the residual liquid due to the solidification (and cooling) shrinkage of the casting, which cause a pressure drop and viscous flow of enriched liquid inside the mushy zone, is believed to be the main reason for segregation band formation.

Place, publisher, year, edition, pages
Jönköping: Jönköping, 2004. 34 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1087
Keyword
Mg-AI, microstructure, mechanical properties, divorced degree, modeling, mould constraint, segregation band
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-23151 (URN)2555 (Local ID)91-7373-934-0 (ISBN)2555 (Archive number)2555 (OAI)
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2013-11-04

Open Access in DiVA

No full text

Authority records BETA

Cao, Haiping

Search in DiVA

By author/editor
Cao, Haiping
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf