liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
S6 kinase signaling and tamoxifen response in breast cancer cells and in two randomized breast cancer cohorts
Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2013 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Detecting signals in the mammalian target of rapamycin (mTOR), and the estrogen receptor (ER) pathways for prediction of treatment response may be a future clinical tool in primary breast cancer. Here, we investigated the validity and value of the mTOR targets p70-S6 kinase (S6K) 1 and 2 as biomarkers for tamoxifen sensitivity in vitro and in two independent tamoxifen randomized postmenopausal breast cancer cohorts. In addition, the prognostic value of the S6Ks was evaluated. A simultaneous knockdown of the S6Ks in ER-positive breast cancer cells resulted in G1 arrest, and tamoxifen-induced G1 arrest was in part S6K1+S6K2 dependent, suggesting separate roles in proliferation and in tamoxifen response. We found S6K1 to correlate with HER2 and cytoplasmic Akt activity, whereas S6K2 and phosphorylated S6K were closer connected with ER positivity, low proliferation and nucleic p-Akt. Treatment prediction and prognosis were evaluated by immunohistochemical staining. Nuclear accumulation of S6K1 was indicative of a reduced tamoxifen treatment effect, compared with a significant benefit from tamoxifen treatment in patients without tumor S6K1 nuclear accumulation. Patients with a combination of S6K1 nuclear accumulation and S6K2 cytoplasmic accumulation in the tumor cells had no tamoxifen benefit. Also, S6K1 and S6K2 activation, indicated by p-S6K-t389 expression, was associated with low benefit from tamoxifen compared with untreated patients. In addition, high protein expression of S6K1, independent of localization, predicted worse prognosis. This was not evident for variations in S6K2 or p-S6K-t389 expression.

In conclusion, the mTOR targeted kinases S6K1 and S6K2 interfere with proliferation and response to tamoxifen. Monitoring their activity andintracellular localization may provide biomarkers for breast cancer treatment, allowing for identification of a group of patients less likely tobenefit from tamoxifen and thus in need of an alternative or additional treatment.

Place, publisher, year, edition, pages
2013.
Keyword [en]
pS6K, S6K1, S6K2, mTOR, Akt, estrogen receptor, endocrine treatment
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-100902OAI: oai:DiVA.org:liu-100902DiVA: diva2:664259
Available from: 2013-11-14 Created: 2013-11-14 Last updated: 2013-11-14Bibliographically approved
In thesis
1. The Akt/mTOR Pathway and Estrogen Receptor Phosphorylations: a crosstalk with potential to predict tamoxifen resistance in breast cancer
Open this publication in new window or tab >>The Akt/mTOR Pathway and Estrogen Receptor Phosphorylations: a crosstalk with potential to predict tamoxifen resistance in breast cancer
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Estrogen receptor α content is the primary breast cancer biomarker distinguishing the patients responsive from the non-responsive to endocrine treatments. Tamoxifen is an estrogen competitor with large potential to treat breast cancer patients and prolongs time to recurrence. Despite the estrogen receptor positivity and tamoxifen treatment, many women face recurrence of the disease. An important mechanism of resistance to endocrine treatments is upregulated growth factor signaling, and the subsequent effect on the estrogen receptor, rendering an active receptor that stimulates cell proliferation or reduced estrogen-receptor dependence.

This thesis concerns the investigation of biomarkers, as a complement to the existing markers, for determining optimal treatment for patients with primary invasive breast cancer. Randomized patient tumor materials were used in order to measure variations in gene copies, proteins, and protein phosphorylations and to further relate these variations to time-to-recurrence. Endocrine untreated groups within the patient tumor sets gave us the opportunity to study the prognostic potential of selected markers and to compare tamoxifen-treated patients with endocrine untreated, thus obtaining a treatment-predictive value of each marker or marker combination.

In endocrine-dependent cancer the 11q13 chromosomal region is frequently amplified, harboring the genes encoding the cell cycle stimulator cyclin D1 and the estrogen receptor phosphorylating kinase Pak1, respectively. Amplification of the genes was associated with reduced time-torecurrence, indicating a prognostic value, whereas PAK1 gene amplification predicted reduced response to tamoxifen treatment. Moreover, the protein expression of Pak1 tended to predict treatment response, which led to the investigation of this protein in a larger cohort. Together with one of its targets, the estrogen receptor phosphorylation at serine 305, Pak1 predicted reduced response to tamoxifen treatment when detected in the nucleus of tumor cells, suggesting activation of this pathway as a mechanism for tamoxifen-treatment resistance. The estrogen receptor is phosphorylated by several growth factor stimulated kinases. The role of serine-167 phosphorylation has been debated, with inconsistent results. To study the biomarker value of this site the upstream activity of Akt, mTOR, and the S6 kinases were analyzed individually and in combinations. As a prognostic factor, serine 167 indicated an improved breast cancer survival, and as a treatment predictive factor we could not detect a significant value of serine 167 as a single marker. However, in combination with serine 305, and Akt/mTOR-pathway activation, the response to tamoxifen treatment was reduced. The mTOR effector protein S6K1 was found to be associated with HER2 positivity and a worse prognosis. In the group of patients with S6K1 accumulation in the tumor cell nuclei, treatment did not prolong time-to-recurrence, similarly as observed with expression of active S6 kinases. In vitro, a simultaneous knockdown of the S6 kinases in estrogen receptor-positive breast cancer cells resulted in G1 arrest, and tamoxifen-induced G1 arrest was in part S6 kinase dependent.

The results presented herein suggest biomarkers that would improve treatment decisions in the clinic, specifically for estrogen receptor-positive breast cancer and tamoxifen treatment but in a broader perspective, also for other endocrine treatments and targeted treatments.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 71 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1379
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-100903 (URN)10.3384/diss.diva-100903 (DOI)978-91-7519-515-5 (ISBN)
Public defence
2013-12-18, Nils-Holgersalen, ing. 71, Campus US, Linköpings universitet, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2013-11-14 Created: 2013-11-14 Last updated: 2013-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Bostner, JosefineKarlsson, ElinBivik, CeciliaPerez-Tenorio, GizehFranzén, HannaKonstantinell, AelitaStål, Olle

Search in DiVA

By author/editor
Bostner, JosefineKarlsson, ElinBivik, CeciliaPerez-Tenorio, GizehFranzén, HannaKonstantinell, AelitaStål, Olle
By organisation
OncologyFaculty of Health SciencesDepartment of Clinical and Experimental MedicineDivision of Inflammation MedicineDivision of Clinical SciencesDepartment of Oncology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf