liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Supporting cells contribute to control of hearing sensitivity
Karolinska Institutet, Stockholm, Sweden.
Karolinska Institutet, Stockholm, Sweden.
Karolinska Institutet, Stockholm, Sweden.
Université Montpellier II, France.
Show others and affiliations
1999 (English)In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 19, no 11, 4498-4507 p.Article in journal (Refereed) Published
Abstract [en]

The mammalian hearing organ, the organ of Corti, was studied in an in vitro preparation of the guinea pig temporal bone. As in vivo, the hearing organ responded with an electrical potential, the cochlear microphonic potential, when stimulated with a test tone. After exposure to intense sound, the response to the test tone was reduced. The electrical response either recovered within 10-20 min or remained permanently reduced, thus corresponding to a temporary or sustained loss of sensitivity. Using laser scanning confocal microscopy, stimulus-induced changes of the cellular structure of the hearing organ were simultaneously studied. The cells in the organ were labeled with two fluorescent probes, a membrane dye and a cytoplasm dye, showing enzymatic activity in living cells. Confocal microscopy images were collected and compared before and after intense sound exposure. The results were as follows. (1) The organ of Corti could be divided into two different structural entities in terms of their susceptibility to damage: an inner, structurally stable region comprised of the inner hair cell with its supporting cells and the inner and outer pillar cells; and an outer region that exhibited dynamic structural changes and consisted of the outer hair cells and the third Deiters' cell with its attached Hensen's cells. (2) Exposure to intense sound caused the Deiters' cells and Hensen's cells to move in toward the center of the cochlear turn. (3) This event coincided with a reduced sensitivity to the test tone (i.e., reduced cochlear microphonic potential). (4) The displacement and sensitivity loss could be reversible. It is concluded that these observations have relevance for understanding the mechanisms behind hearing loss after noise exposure and that the supporting cells take an active part in protection against trauma during high-intensity sound exposure.

Place, publisher, year, edition, pages
Society for Neuroscience , 1999. Vol. 19, no 11, 4498-4507 p.
Keyword [en]
hearing loss; inner ear; cochlea; hair cells; supporting cells; acoustic trauma
National Category
URN: urn:nbn:se:liu:diva-101078PubMedID: 10341250OAI: diva2:665136
Available from: 2013-11-19 Created: 2013-11-19 Last updated: 2013-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedLink to article

Search in DiVA

By author/editor
Fridberger, Anders
In the same journal
Journal of Neuroscience

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 196 hits
ReferencesLink to record
Permanent link

Direct link