liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns
Karolinska Institutet / Karolinska University Hospital, Stockholm, Sweden.
2010 (English)In: Journal of biomedical optics, ISSN 1560-2281, Vol. 15, no 5, 056012- p.Article in journal (Refereed) Published
Abstract [en]

A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

Place, publisher, year, edition, pages
2010. Vol. 15, no 5, 056012- p.
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:liu:diva-101058DOI: 10.1117/1.3494564PubMedID: 21054106OAI: oai:DiVA.org:liu-101058DiVA: diva2:665159
Available from: 2013-11-19 Created: 2013-11-19 Last updated: 2013-11-29

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Fridberger, Anders

Search in DiVA

By author/editor
Fridberger, Anders
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf