liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
A differentially amplified motion in the ear for near-threshold sound detection
Karolinska Institutet, Stockholm, Sweden.
Show others and affiliations
2011 (English)In: Nature Neuroscience, ISSN 1097-6256, Vol. 14, no 6, 770-774 p.Article in journal (Refereed) Published
Abstract [en]

The ear is a remarkably sensitive pressure fluctuation detector. In guinea pigs, behavioral measurements indicate a minimum detectable sound pressure of ∼20 μPa at 16 kHz. Such faint sounds produce 0.1-nm basilar membrane displacements, a distance smaller than conformational transitions in ion channels. It seems that noise within the auditory system would swamp such tiny motions, making weak sounds imperceptible. Here we propose a new mechanism contributing to a resolution of this problem and validate it through direct measurement. We hypothesized that vibration at the apical side of hair cells is enhanced compared with that at the commonly measured basilar membrane side. Using in vivo optical coherence tomography, we demonstrated that apical-side vibrations peaked at a higher frequency, had different timing and were enhanced compared with those at the basilar membrane. These effects depend nonlinearly on the stimulus sound pressure level. The timing difference and enhancement of vibrations are important for explaining how the noise problem is circumvented.

Place, publisher, year, edition, pages
2011. Vol. 14, no 6, 770-774 p.
National Category
URN: urn:nbn:se:liu:diva-101055DOI: 10.1038/nn.2827PubMedID: 21602821OAI: diva2:665163
Available from: 2013-11-19 Created: 2013-11-19 Last updated: 2013-11-29

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Fridberger, Anders
In the same journal
Nature Neuroscience

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 190 hits
ReferencesLink to record
Permanent link

Direct link