liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor
University of Groningen, the Netherlands.
University of Groningen, the Netherlands.
University of Groningen, the Netherlands.
University of Groningen, the Netherlands.
Show others and affiliations
2005 (English)In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 65, no 5, 1729-1737 p.Article in journal (Refereed) Published
Abstract [en]

The RET proto-oncogene encodes a receptor tyrosine kinase whose dysfunction plays a crucial role in the development of several neural crest disorders. Distinct activating RET mutations cause multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Despite clear correlations between the mutations found in these cancer syndromes and their phenotypes, the molecular mechanisms connecting the mutated receptor to the different disease phenotypes are far from completely understood. Luciferase reporter assays in combination with immunoprecipitations, and Western and immunohistochemistry analyses were done in order to characterize the signaling properties of two FMTC-associated RET mutations, Y791F and S891A, respectively, both affecting the tyrosine kinase domain of the receptor. We show that these RET-FMTC mutants are monomeric receptors which are autophosphorylated and activated independently of glial cell line-derived neurotrophic factor. Moreover, we show that the dysfunctional signaling properties of these mutants, when compared with wild-type RET, involve constitutive activation of signal transducers and activators of transcription 3 (STAT3). Furthermore, we show that STAT3 activation is mediated by a signaling pathway involving Src, JAK1, and JAK2, differing from STAT3 activation promoted by RET(C634R) which was previously found to be independent of Src and JAKs. Three-dimensional modeling of the RET catalytic domain suggested that the structural changes promoted by the respective amino acids substitutions lead to a more accessible substrate and ATP-binding monomeric conformation. Finally, immunohistochemical analysis of FMTC tumor samples support the in vitro data, because nuclear localized, Y705-phosphorylated STAT3, as well as a high degree of RET expression at the plasma membrane was observed.

Place, publisher, year, edition, pages
American Association for Cancer Research , 2005. Vol. 65, no 5, 1729-1737 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-101415DOI: 10.1158/0008-5472.CAN-04-2363PubMedID: 15753368OAI: oai:DiVA.org:liu-101415DiVA: diva2:666148
Available from: 2013-11-22 Created: 2013-11-22 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Gimm, Oliver

Search in DiVA

By author/editor
Gimm, Oliver
In the same journal
Cancer Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf