liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In vivo integrity of intra‐corneal bioengineered discs in rabbit models
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0001-6024-4144
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-1222-6720
Show others and affiliations
2013 (English)In: Acta Ophthalmologica; Special Issue: Abstracts from the 2013 European Association for Vision and Eye Research Conference, August 2013 Volume 91, Issue Supplement s252, John Wiley & Sons, 2013Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

Background: We have previously reported the successful integration and safety of bioengineered materials as corneal substitutes in human models. Despite the promising results as corneal implants, more elastic and robust materials are required for use as thin intra-corneal lenses to withstand surgical manipulation for corrective surgery and improved vision. Most of the existing corneal inlays are made of synthetic materials. Here we describe the potential of bioengineerd materials for vision correction. Objectives: to develop bioengineered materials as inlays within the corneal tissue as well as evaluating the in vivo integrity and integration of the materials in rabbit models. Methods: Bioengineered inlays were prepared from collagen and tested for their physical and biological propertis. A femtosecond laser was used to cut 100 mircon thick discs of mid-stromal tissue from corneas of 20 rabbits and replaced with bioengineered inlays. Results: The new materials demonstrated improved mechanical properties while maintaining their clarity and biocompatibility. The bioengineered inlays retained their shapes, thickness, and clarity 8 weeks post-surgery in rabbits.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013.
National Category
Medical and Health Sciences Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-101516DOI: 10.1111/j.1755-3768.2013.4733.xOAI: oai:DiVA.org:liu-101516DiVA: diva2:666441
Conference
European Association for Vision and Eye Research (EVER-2013), 18-21 September, Nice, France
Available from: 2013-11-22 Created: 2013-11-22 Last updated: 2014-10-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rafat, MehrdadLagali, NeilKoulikovska, MarinaGriffith, MayFagerholm, Per

Search in DiVA

By author/editor
Rafat, MehrdadLagali, NeilKoulikovska, MarinaGriffith, MayFagerholm, Per
By organisation
Division of Cell BiologyFaculty of Health SciencesDivision of NeuroscienceDepartment of Ophthalmology in Linköping
Medical and Health SciencesHealth Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf