liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Optimal localisation of next generation biofuel production in Sweden
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-4597-4082
Chalmers University of Technology.
SP Technical Research Institute of Sweden .
SP Technical Research Institute of Sweden .
Show others and affiliations
2013 (English)Report (Other academic)
Abstract [en]

With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how.

This report describes the development of BeWhere Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying boundary conditions, in particular regarding energy market prices, policy instruments, investment costs, feedstock competition and integration possibilities with existing energy systems. This report also presents current and future Swedish biomass resources as well as a compilation of three consistent future energy scenarios.

BeWhere is based on Mixed Integer Linear Programming (MILP) and is written in the commercial software GAMS, using CPLEX as a solver. The model minimises the cost of the entire studied system, including costs and revenues for biomass harvest and transportation, production plants, transportation and delivery of biofuels, sales of co-products, and economic policy instruments. The system cost is minimised subject to constraints regarding, for example, biomass supply, biomass demand, import/export of biomass, production plant operation and biofuel demand. The model will thus choose the least costly pathways from one set of feedstock supply points to a specific biofuel production plant and further to a set of biofuel demand points, while meeting the demand for biomass in other sectors.

BeWhere has previously been developed by the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria and Luleå University of Technology and has been used in several studies on regional and national levels, as well as on the European level. However, none of the previous model versions has included site-specific conditions in existing industries as potential locations for industrially integrated next generation biofuel production. Furthermore, they also usually only consider relatively few different production routes. In this project, bottom-up studies of integrated biofuel production have been introduced into a top-down model and taken to a higher system level, and detailed, site-specific input data of potential locations for integrated biofuel production has been included in the model.

This report covers the first stages of model development of BeWhere Sweden. The integration possibilities have been limited to the forest industry and a few district heating networks, and the feedstocks to biomass originating from the forest. The number of biofuel production technologies has also been limited to three gasification-based concepts producing DME, and two hydrolysis- and fermentation-based concepts producing ethanol. None of the concepts considered is yet commercial on the scale envisioned here.

Preliminary model runs have been performed, with the main purpose to identify factors with large influence on the results, and to detect areas in need of further development and refinement. Those runs have been made using a future technology perspective but with current energy market conditions and biomass supply and demand. In the next stage of model development different roadmap scenarios will be modelled and analysed. Three different roadmap scenarios that describe consistent assessments of the future development concerning population, transport and motor fuel demands, biomass resources, biomass demand in other industry sectors, energy and biomass market prices etc. have been constructed within this project and are presented in this report. As basis for the scenarios the report “Roadmap 2050” by the Swedish Environmental Protection Agency (EPA) has been used, using 2030 as a target year for the scenarios. Roadmap scenario 1 is composed to resemble “Roadmap 2050” Scenario 1. Roadmap scenario 2 represents an alternative development with more protected forest and less available biomass resources, but a larger amount of biofuels in the transport system, partly due to a higher transport demand compared to Roadmap scenario 1. Finally Roadmap scenario 3 represents a more “business as usual” scenario with more restrictive assumptions compared to the other two scenarios.

In total 55 potential biofuel plant sites have been included at this stage of model development. Of this 32 sites are pulp/paper mills, of which 24 have chemical pulp production (kraft process) while eight produce only mechanical pulp and/or paper. Seven of the pulp mills are integrated with a sawmill, and 18 additional stand-alone sawmills are also included, as are five district heating systems. The pulp and paper mills and sawmills are included both as potential biofuel plant sites, as biomass demand sites regarding wood and bioenergy, and as biomass supply sites regarding surplus by-products. District heating systems are considered both regarding bioenergy demand and as potential plant sites.

In the preliminary model runs, biofuel production integrated in chemical pulp mills via black liquor gasification (BLG) was heavily favoured. The resulting total number of required production plants and the total biomass feedstock volumes to reach a certain biofuel share target are considerably lower when BLG is considered. District heating systems did not constitute optimal plant locations with the plant positions and heat revenue levels assumed in this study. With higher heat revenues, solid biomass gasification (BMG) with DME production was shown to be potentially interesting. With BLG considered as a production alternative, however, extremely high heat revenues would be needed to make BMG in district heating systems competitive.

The model allows for definition of biofuel share targets for Sweden overall, or to be fulfilled in each county. With targets set for Sweden overall, plant locations in the northern parts of Sweden were typically favoured, which resulted in saturation of local biofuel markets and no biofuel use in the southern parts. When biofuels needed to be distributed to all parts of Sweden, the model selected a more even distribution of production plants, with plants also in the southern parts. Due to longer total transport distances and non-optimal integration possibilities, the total resulting system cost was higher when all counties must fulfil the biofuel share target. The total annual cost to fulfil a certain biofuel target would also be considerably higher without BLG in the system, as would the total capital requirement. This however presumes that alternative investments would otherwise be undertaken, such as investments in new recovery boilers. Without alternative investments the difference between a system with BLG and a system without BLG would be less pronounced.

In several cases the model located two production plants very close to each other, which would create a high biomass demand on a limited geographic area. The reason is that no restrictions on transport volumes have yet been implemented in the model. Further, existing onsite co-operations between for example sawmills and pulp mills have not always been captured by the input data used for this report, which can cause the consideration of certain locations as two separate plant sites, when in reality they are already integrated. It is also important to point out that some of the mill specific data (obtained from the Swedish Forest Industries Federation’s environmental database) was identified to contain significant errors, which could affect the results related to the plant allocations suggested in this report.

Due to the early model development stage and the exclusion of for example many potential production routes and feedstock types, the model results presented in this report must be considered as highly preliminary. A number of areas in need of supplementing have been identified during the work with this report. Examples are addition of more industries and plant sites (e.g. oil refineries), increasing the number of other production technologies and biofuels (e.g. SNG, biogas, methanol and synthetic diesel), inclusion of gas distribution infrastructures, and explicit consideration of import and export of biomass and biofuel. Agricultural residues and energy crops for biogas production are also considered to be a very important and interesting completion to the model. Furthermore, inclusion of intermediate products such as torrefied biomass, pyrolysis oil and lignin extracted from chemical pulp mills would make it possible to include new production chains that are currently of significant interest for technology developers. As indicated above, the quality of some input data also needs to be improved before any definite conclusions regarding next generation biofuel plant localisations can be drawn.Due to the early model development stage and the exclusion of for example many potential production routes and feedstock types, the model results presented in this report must be considered as highly preliminary. A number of areas in need of supplementing have been identified during the work with this report. Examples are addition of more industries and plant sites (e.g. oil refineries), increasing the number of other production technologies and biofuels (e.g. SNG, biogas, methanol and synthetic diesel), inclusion of gas distribution infrastructures, and explicit consideration of import and export of biomass and biofuel. Agricultural residues and energy crops for biogas production are also considered to be a very important and interesting completion to the model. Furthermore, inclusion of intermediate products such as torrefied biomass, pyrolysis oil and lignin extracted from chemical pulp mills would make it possible to include new production chains that are currently of significant interest for technology developers. As indicated above, the quality of some input data also needs to be improved before any definite conclusions regarding next generation biofuel plant localisations can be drawn.

A further developed BeWhere Sweden model has the potential for being a valuable tool for simulation and analysis of the Swedish energy system, including the industry and transport sectors. The model can for example be used to analyse different biofuel scenarios and estimate cost effective biofuel production plant locations, required investments and costs to meet a certain biofuel demand. Today, concerned ministries and agencies base their analyses primary on results from the models MARKAL and EMEC, but none of these consider the spatial distribution of feedstock, facilities and energy demands. Sweden is a widespread country with long transport distances, and where logistics and localisation of production plants are crucial for the overall efficiency. BeWhere Sweden considers this and may contribute with valuable input that can be used to complement and validate results from MARKAL and EMEC; thus testing the feasibility of these model results. This can be of value for different biofuel production stakeholders as well as for government and policy makers. Further, Sweden is also of considerable interest for future next generation biofuel production from a European perspective. By introducing a link to existing models that operate on a European level, such as BeWhere Europe and the related IIASA model GLOBIOM, BeWhere Sweden could also be used to provide results of value for EU policies and strategies.

Abstract [sv]

Sverige besitter goda tillgångar på skogsbiomassa och olika typer av cellulosabaserat avfall som potentiellt kan användas till framtida storskalig produktion av nästa generations biodrivmedel. Eftersom Sverige har satt som mål att vara oberoende av fossila bränslen inom transportsektorn år 2030 och helt fossilfritt 2050, är detta förmodligen också en nödvändighet. Att nå konkurrenskraftiga produktionskostnader kommer sannolikt kräva stora biodrivmedelsanläggningar. Ett råvaruintag i spannet 1-2 miljoner ton per år (motsvarande en anläggningskapacitet på 300-600 MW), kan förväntas, vilket innebär stora logistiska utmaningar. För att möjliggöra biodrivmedelsproduktion i så stora anläggningar kommer betydande infrastrukturplanering att vara nödvändigt. Den geografiska placeringen av produktionsanläggningar är därför av avgörande betydelse och måste vara strategisk för att minimera transporterna av såväl råvaror som slutprodukter. Konkurrensen om den tillgängliga råvaran från exempelvis skogsindustrin och kraftvärmesektorn, komplicerar lokaliseringsproblemet ytterligare. Eftersom potentialen för ett ökat biomassautnyttjande är begränsad, är resurseffektiviteten av stor betydelse. Integration av drivmedelsproduktion i befintliga industrier eller fjärrvärmesystem kan vara fördelaktigt ur flera perspektiv. Exempel är möjligheter till effektiv värmeintegrering, integrering av råmaterial och utrustning, samt utnyttjande av befintliga kunskaper och erfarenheter.

Denna rapport beskriver utvecklingen av BeWhere Sweden – en geografiskt explicit optimeringsmodell för lokalisering av nästa generations biodrivmedelsproduktion i Sverige. Det främsta syftet med modellen är att kunna identifiera och värdera lokaliseringar som är så robusta som möjligt i förhållande till olika randvillkor, i synnerhet gällande energimarknadsaspekter, styrmedel, investeringskostnader och råvarukonkurrens. I rapporten presenteras också en översikt av nuvarande och framtida biobränsleresurser i Sverige, samt en sammanställning av tre konsekventa framtidsscenarier.

BeWhere bygger på blandad heltalsprogrammering (Mixed Integer Linear Programming, MILP) och är skriven i den kommersiella programvaran GAMS, med CPLEX som lösare. Modellen minimerar kostnaden för hela det studerade systemet, inklusive kostnader och intäkter för produktion och transport av biomassa, produktionsanläggningar, transport och leverans av biodrivmedel, försäljning av biprodukter och ekonomiska styrmedel. System-kostnaden minimeras under ett antal olika bivillkor som beskriver till exempel tillgång och efterfrågan på biomassa, import/export av biomassa och biodrivmedel, anläggningsdrift och efterfrågan på biodrivmedel. Modellen kommer således välja de minst kostsamma kombinationerna av råvaror, produktionsanläggningar och leveranser av biodrivmedel, samtidigt som efterfrågan på biomassa i andra sektorer tillgodoses.

BeWhere-modellen har tidigare utvecklats vid International Institute for Applied Systems Analysis (IIASA) i Laxenburg, Österrike och vid Luleå Tekniska Universitet, och har använts i ett stort antal studier på regional och nationell nivå, liksom på EU-nivå. Ingen av de tidigare modellerna har dock tagit hänsyn till platsspecifika förhållanden för potentiell integration av biodrivmedelsproduktion i exempelvis industrier. Dessutom har tidigare modeller generellt inkluderat relativt få olika produktionsalternativ. I det här projektet har bottom-up-studier av integrerad biodrivmedelsproduktion introducerats i en top-down-modell och tagits till en högre systemnivå, med beaktande av detaljerade platsspecifika data för de potentiella lägena för integrerad biodrivmedelsproduktion.

Denna rapport omfattar de första faserna i modellutvecklingen av BeWhere Sweden. Integrationsmöjligheterna har här begränsats till skogsindustri och ett fåtal fjärrvärmenät, och råvarorna till biomassa som härrör från skogen. Produktionsteknikerna har begränsats till tre förgasningsbaserade koncept för produktion av DME, samt två hydrolys-och jäsningsbaserade koncept för produktion av etanol. Ingen av dessa tekniker är ännu kommersiell i den skala som beaktats i detta projekt.

Preliminära modellkörningar har genomförts med det huvudsakliga syftet att identifiera faktorer med stor inverkan på resultaten, samt behov av ytterligare modellutveckling och förbättring. Dessa körningar har gjorts utifrån dagens system, med nuvarande energimarknadsvillkor och tillgång och efterfrågan på biomassa, men med ett framtidsperspektiv gällande tekniker. I nästa steg av modellutvecklingen kommer olika framtidscenarier att modelleras och analyseras. Tre olika scenarier med bedömningar av framtida befolkningsutveckling, transport- och drivmedelsbehov, tillgång och efterfrågan på biomassa i olika samhällssektorer, samt marknadspriser på energi och biomassa, har skapats och presenteras i denna rapport. Naturvårdsverkets rapport ”Färdplan 2050” har använts som underlag för scenarierna, men med 2030 som tidsram. Färdplansscenario 1 är sammansatt för att efterlikna Scenario 1 i ”Färdplan 2050”. Färdplansscenario 2 representerar en alternativ utveckling med mer skyddad skog och färre tillgängliga biomassaresurser, men ed en större mängd biodrivmedel i transportsystemet, delvis beroende på en högre efterfrågan på transporter jämfört med i Färdplansscenario 1. Färdplansscenario 3 är slutligen mer av ett ”business as usual”-scenario, med generellt mer restriktiva antaganden jämfört med de andra två scenarierna.

Sammanlagt 55 potentiella platser för integrerad biodrivmedelsproduktion har inkluderats i detta skede av modellutvecklingen. Av dessa är 32 massa- och pappersindustrier, varav 24 producerar kemisk massa (sulfatmassa) och åtta tillverkar mekanisk massa och/eller papper. Sju av massabruken är även integrerade med ett sågverk. Ytterligare 18 fristående sågverk är också beaktade, liksom fem fjärrvärmesystem. Massa-och pappersbruken och sågverken ingår i modellen dels som möjliga lokaliseringar för biodrivmedelsproduktion, dels med avseende på biobränslebehov (stamved och/eller energi) som måste tillfredsställas, och dels som producenter av biobränsle (överskott av industriella biprodukter). Fjärrvärmesystemen beaktas både i form av möjliga lägen för integrerad drivmedelsproduktion, och med avseende på behov av bioenergi.

I de preliminära modellkörningarna visade sig drivmedelsproduktion integrerat i kemiska massabruk baserat på svartlutsförgasning (BLG) vara särskilt gynnsamt. När BLG beaktades var både det resulterande erforderliga antalet produktionsanläggningar och det totala biobränslebehovet för att uppnå ett visst andelsmål för biodrivmedel i transportsektorn, betydligt lägre än om BLG inte beaktades. Fjärrvärmesystem visade sig generellt inte utgöra optimala lokaliseringar med de system som innefattats och de värmepriser som antagits i denna rapport. Med högre värmeintäkter visade sig att förgasning av fasta biobränslen med DME-produktion kan vara potentiellt intressant. Med BLG-baserad produktion inkluderad som produktionsalternativ skulle dock extremt höga värmepriser behövas för att göra fastbränsleförgasning i fjärrvärmesystem konkurrenskraftigt.

I modellen kan mål för andelen biodrivmedel i transportsektorn anges för Sverige som helhet, eller som mål som måste uppfyllas i varje län. När målet angavs övergripande för Sverige gynnades anläggningslokaliseringar i norra Sverige, vilket ledde till mättnad av de lokala biodrivmedelsmarknaderna och ingen biodrivmedelsanvändning i de mer tätt-befolkade södra delarna. Om ett biodrivmedelsmål istället angavs länsvis valde modellen en jämnare geografisk fördelning av produktionsanläggningarna, med anläggningar även i södra Sverige. På grund av längre totala transportavstånd och icke-optimala integrations-möjligheter resulterade detta i en högre total systemkostnad jämfört med när målet angavs för Sverige som helhet. Den totala kostnaden för att uppfylla ett visst biodrivmedelsmål, liksom det totala kapitalbehovet, skulle också vara betydligt högre utan BLG i systemet. Detta förutsätter dock att alternativa investeringar annars skulle ha genomförts, såsom investeringar i nya sodapannor. Utan beaktande av alternativa investeringar skulle skillnaden mellan ett system med BLG och ett system utan BLG, vara mindre.

I flera körningar valde modellen två produktionsanläggningar mycket nära varandra, vilket skulle innebära en stor efterfrågan på biomassa på ett begränsat geografiskt område. Anledningen är dels att restriktioner för transportvolymer ännu inte införts i modellen, dels att befintliga samarbeten mellan exempelvis sågverk och massabruk inte alltid fångats av de indata som använts. Detta kan medföra att vissa platser betraktats som två separata anläggningar, när de i verkligheten redan har en hög grad av integrering och därmed borde betraktas som ett läge. Under arbetets gång har en del bruksspecifika data som använts (vilka erhållits från Skogsindustriernas miljödatabas) visat sig innehålla väsentliga felaktigheter. Det är därför viktigt att poängtera att detta kan påverka resultaten gällande de anläggningslokaliseringar som framstår som mest gynnsamma.

På grund av modellens tidiga utvecklingsstadium och att ett flertal potentiella produktionsalternativ och råvaror ännu inte inkluderats i modellen, måste de resultat som presenterats i denna rapport betraktas som mycket preliminära. Under arbetet har ett antal områden i behov av komplettering och vidareutveckling identifierats. Exempel är tillägg av både fler industrityper (t.ex. oljeraffinaderier) och fler potentiella anläggningsplatser, utökning av antalet produktionstekniker och drivmedel (t.ex. SNG, biogas, metanol och syntetisk diesel), inkludering av infrastrukturer för gasdistribution, samt explicit hänsyn till import och export av biomassa och biodrivmedel. Restprodukter från jordbruket och energigrödor för biogasproduktion anses också vara ett viktig och intressant tillägg till modellen. Dessutom skulle införandet av intermediärprodukter som torrefierad biomassa, pyrolysolja och lignin från kemiska massabruk göra det möjligt att inkludera ytterligare nya produktionskedjor som för närvarande är av betydande intresse för teknikutvecklare. Som diskuterats ovan behöver kvaliteten på vissa indata också förbättras innan några definitiva slutsatser kan dras om var nästa generations biodrivmedelsproduktion bör vara lokaliserad.

En vidareutvecklad BeWhere Sweden-modell har potential att utgöra ett värdefullt verktyg för simulering och analys av det svenska energisystemet, industrin och transportsektorn inkluderade. Modellen kan exempelvis användas för att analysera olika biodrivmedels-scenarier och för att identifiera och utvärdera kostnadseffektiva lokaliseringar för drivmedelsproduktion, nödvändiga investeringar, samt kostnader och biomassabehov för att möta en viss efterfrågan på biodrivmedel. Idag baserar berörda myndigheter primärt sina analyser på resultat från modellerna MARKAL och EMEC. Ingen av dessa modeller tar dock hänsyn till den geografiska fördelningen av råvaror, anläggningar och energi- och råvarubehov. Sverige är ett vidsträckt land med långa transportavstånd där logistik och lokalisering av produktionsanläggningar är avgörande för den totala effektiviteten. BeWhere Sweden beaktar dessa aspekter och kan bidra med värdefulla resultat som kan användas för att i tur komplettera och validera resultat från MARKAL och EMEC, och på så sätt testa implementerbarheten av dessa modellresultat. Detta kan vara av värde för såväl intressenter i biodrivmedelstillverkning, som för myndigheter och politiska beslutsfattare. Vidare är Sverige av stort intresse för framtida tillverkning av nästa generations biodrivmedel även ur ett europeiskt perspektiv. Genom att införa en länk till befintliga modeller som verkar på europeisk nivå, såsom BeWhere Europe och den relaterade IIASA-modellen GLOBIOM, kan BeWhere Sweden också användas för att generera resultat av värde för EU:s politik och strategier.

Place, publisher, year, edition, pages
Göteborg: Svenskt kunskapscentrum för förnybara drivmedel, f3 , 2013. , 124 p.
, f3 report, 2013:8
National Category
Renewable Bioenergy Research Bioenergy
URN: urn:nbn:se:liu:diva-102630OAI: diva2:680105
Available from: 2013-12-17 Created: 2013-12-17 Last updated: 2013-12-17Bibliographically approved

Open Access in DiVA

Optimal localisation of next generation biofuel production in Sweden(5433 kB)622 downloads
File information
File name FULLTEXT01.pdfFile size 5433 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

f3 2013:8 Optimal localisation

Search in DiVA

By author/editor
Wetterlund, Elisabeth
By organisation
Energy SystemsThe Institute of Technology
Renewable Bioenergy ResearchBioenergy

Search outside of DiVA

GoogleGoogle Scholar
Total: 622 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 267 hits
ReferencesLink to record
Permanent link

Direct link