liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Site-Specific and Covalent Attachment of His-Tagged Proteins by Chelation Assisted Photoimmobilization: A Strategy for Microarraying of Protein Ligands
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
Show others and affiliations
2013 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 29, no 37, 11687-11694 p.Article in journal (Refereed) Published
Abstract [en]

A novel strategy for site-specific and covalent attachment of proteins has been developed, intended for robust and controllable immobilization of histidine (His)-tagged ligands in protein microarrays. The method is termed chelation assisted photoimmobilization (CAP) and was demonstrated using human IgG-Fc modified with C-terminal hexahistidines (His-IgGFc) as the ligand and protein A as the analyte. Alkanethiols terminated with either nitrilotriacetic acid (NTA), benzophenone (BP); or oligo(ethylene glycol) were synthesized and mixed self-assembled monolayers (SAMs) were prepared on gold and thoroughly characterized by infrared reflection absorption spectroscopy (IRAS), ellipsometry, and contact angle goniometry. In the process of CAP, NTA chelates Ni2+ and the complex coordinates the His-tagged ligand in an oriented assembly. The ligand is then photoimmobilized via BP, which forms covalent bonds upon UV light activation. In the development of affinity biosensors and protein microarrays, site-specific attachment of ligands in a fashion where analyte binding sites are available is often preferred to random coupling. Analyte binding performance of ligands immobilized either by CAP or by standard amine coupling was characterized by surface plasmon resonance in combination with IRAS. The relative analyte response with randomly coupled ligand was 2.5 times higher than when site-specific attachment was used. This is a reminder that also when immobilizing ligands via residues far from the binding site, there are many other factors influencing availability and activity. Still, CAP provides a valuable expansion of protein immobilization techniques since it offers attractive microarraying possibilities amenable to applications within proteomics.

Place, publisher, year, edition, pages
American Chemical Society , 2013. Vol. 29, no 37, 11687-11694 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-104650DOI: 10.1021/la4011778ISI: 000330148200018OAI: oai:DiVA.org:liu-104650DiVA: diva2:698169
Available from: 2014-02-20 Created: 2014-02-20 Last updated: 2017-12-06

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ericsson, EmmaEnander, KarinBui, LanLundström, IngemarKonradsson, PeterLiedberg, Bo

Search in DiVA

By author/editor
Ericsson, EmmaEnander, KarinBui, LanLundström, IngemarKonradsson, PeterLiedberg, Bo
By organisation
Molecular PhysicsFaculty of Science & EngineeringChemistryBiosensors and BioelectronicsThe Institute of Technology
In the same journal
Langmuir
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 215 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf