liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic Self-Organized Atomic Laminate from First Principles and Thin Film Synthesis
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5036-2833
Science Institute, University of Iceland, Reykjavik, Iceland.
Show others and affiliations
2013 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110Article in journal (Refereed) Published
Abstract [en]

he first experimental realization of a magnetic Mn+1AXn (MAX) phase, (Cr0.75Mn0.25)2GeC, is presented, synthesized as a heteroepitaxial single crystal thin film, exhibiting excellent structural quality. This self-organized atomic laminate is based on the well-known Cr2GeC, with Mn, a new element in MAX phase research, substituting Cr. The compound was predicted using first-principles calculations, from which a variety of magnetic behavior is envisaged, depending on the Mn concentration and Cr/Mn atomic configuration within the sublattice. The analyzed thin films display a magnetic signal at room temperature.

Place, publisher, year, edition, pages
American Physical Society , 2013. Vol. 110
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-104824DOI: 10.1103/PhysRevLett.110.195502OAI: oai:DiVA.org:liu-104824DiVA: diva2:699477
Available from: 2014-02-27 Created: 2014-02-27 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Synthesis and Characterization of New MAX Phase Alloys
Open this publication in new window or tab >>Synthesis and Characterization of New MAX Phase Alloys
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This Thesis explores synthesis and characterization of new MAX phase alloys (M = early transition metal, A = A-group element, and X = C or N), based on incorporation of M and X elements previously not considered. My primary focus is on M = Mn for attaining magnetic properties, and on X = O for potential tuning of the transport properties. A recent theoretical study predicted (Cr1-xMnx)2AlC MAX phase to be a stable magnetic nanolaminate. I aimed at realizing this material and through a combinatorial approach based on magnetron sputtering from elemental targets, the first experimental evidence of Mn incorporation (x = 0.16) in a MAX phase is presented. The corresponding MAX phase was also synthesized using cathodic arc film deposition (x = 0.20) and bulk synthesis methods (x = 0.06). The primary characterization techniques were X-ray diffraction and high-resolution (scanning) transmission electron microscopy in combination with energy dispersive X-ray spectroscopy and/or electron energy loss spectroscopy, to obtain a precise local quantification of the MAX phase composition and to perform lattice resolved imaging. For epitaxial film growth of (Cr1-xMnx)2AlC, evidence is presented for the formation of (Cr1-yMny)5Al8, exhibiting a bcc structure with an interplanar spacing matching exactly half a unit cell of the hexagonal MAX phase. Consequently, routinely performed X-ray diffraction symmetric θ-2θ measurements result in peak positions that are identical for the two phases. As (Cr1-yMny)5Al8 is shown to display a magnetic response, its presence needs to be taken into consideration when evaluating the magnetic properties of the MAX phase. Methods  to distinguish between (Cr1-yMny)5Al8 and (Cr1-xMnx)2AlC are also suggested. As different A-element in the MAX phase is theoretically predicted to influence phase stability, attainable level of Mn  incorporation, as well as magnetic properties, thin films of (Cr0.75Mn0.25)2GeC and bulk (Cr0.7Mn0.3)2GaC have also been synthesized. Vibrating sample magnetometry measurements display a magnetic response for all these materials, identifying (Cr,Mn)2AlC, (Cr,Mn)2GeC, and (Cr,Mn)2GaC as the first magnetic MAX phases. The results presented in this Thesis show that A = Al displays the highest magnetic transition temperature (well above room temperature) and A = Ga allows the highest Mn content. The attainable O incorporation in Ti2Al(C1-xOx)MAX phase was explored by arc deposition of Ti2AlC1-y thin films under high vacuum conditions, and solid-state reactions following deposition of understoichiometric TiCz on Al2O3. Ti2Al(C1-xOx)thin films with up to 13 at.% O (x = 0.52) were synthesized, and O was shown to occupy the C lattice site. The obtained O concentration is enough to allow future experimental investigations of the previously suggested (from theory) substantial change in anisotropic electronic properties with increasing O content. The experimental results obtained in this Thesis expand the MAX phase definition and the materials characteristics into new research areas, towards further fundamental understanding and functionalization.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 58 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1573
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-104829 (URN)10.3384/diss.diva-104829 (DOI)978-91-7519-407-3 (ISBN)
Public defence
2014-03-20, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-02-27 Created: 2014-02-27 Last updated: 2016-12-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ingason, Arni SigurdurMockuté, AurelijaDahlqvist, MartinAlling, BjörnAbrikosov, Igor A.Persson, Per O ARosén, Johanna

Search in DiVA

By author/editor
Ingason, Arni SigurdurMockuté, AurelijaDahlqvist, MartinAlling, BjörnAbrikosov, Igor A.Persson, Per O ARosén, Johanna
By organisation
Thin Film PhysicsThe Institute of TechnologyTheoretical Physics
In the same journal
Physical Review Letters
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf