liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Regularization of Newtonian functions on metric spaces via weak boundedness of maximal operatorsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

Newtonian space, Sobolev-type space, metric measure space, upper gradient, Banach function lattice, rearrangement-invariant space, maximal operator, Lipschitz function, regularization, weak boundedness, density of Lipschitz functions
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:liu:diva-105614OAI: oai:DiVA.org:liu-105614DiVA, id: diva2:708829
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt438",{id:"formSmash:j_idt438",widgetVar:"widget_formSmash_j_idt438",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt444",{id:"formSmash:j_idt444",widgetVar:"widget_formSmash_j_idt444",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt452",{id:"formSmash:j_idt452",widgetVar:"widget_formSmash_j_idt452",multiple:true}); Available from: 2014-03-30 Created: 2014-03-30 Last updated: 2014-04-16
##### In thesis

Density of Lipschitz functions in Newtonian spaces based on quasi-Banach function lattices is discussed. Newtonian spaces are first-order Sobolev-type spaces on abstract metric measure spaces defined via (weak) upper gradients. Our main focus lies on metric spaces with a doubling measure that support a *p*-Poincaré inequality. Absolute continuity of the function lattice quasi-norm is shown to be crucial for approximability by (locally) Lipschitz functions. The proof of the density result uses, among others, that a suitable maximal operator is locally weakly bounded. In particular, various sufficient conditions for such boundedness on rearrangement-invariant spaces are established and applied.

1. Sobolev-Type Spaces: Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay708831",{id:"formSmash:j_idt732:0:j_idt736",widgetVar:"overlay708831",target:"formSmash:j_idt732:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1171",{id:"formSmash:j_idt1171",widgetVar:"widget_formSmash_j_idt1171",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1224",{id:"formSmash:lower:j_idt1224",widgetVar:"widget_formSmash_lower_j_idt1224",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1225_j_idt1227",{id:"formSmash:lower:j_idt1225:j_idt1227",widgetVar:"widget_formSmash_lower_j_idt1225_j_idt1227",target:"formSmash:lower:j_idt1225:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});