liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Fine properties of Newtonian functions and the Sobolev capacity on metric measure spacesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2016 (English)In: Revista matemática iberoamericana, ISSN 0213-2230, E-ISSN 2235-0616, Vol. 32, no 1, p. 219-255Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Zürich: European Mathematical Society Publishing House, 2016. Vol. 32, no 1, p. 219-255
##### Keywords [en]

Newtonian space, Sobolev-type space, metric measure space, Banach function lattice, Sobolev capacity, quasi-continuity, outer capacity, locally Lipschitz function, continuity, doubling measure, Poincaré inequality
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:liu:diva-105615DOI: 10.4171/RMI/884ISI: 000373379500006Scopus ID: 2-s2.0-84960380046OAI: oai:DiVA.org:liu-105615DiVA, id: diva2:708830
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt438",{id:"formSmash:j_idt438",widgetVar:"widget_formSmash_j_idt438",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt444",{id:"formSmash:j_idt444",widgetVar:"widget_formSmash_j_idt444",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt452",{id:"formSmash:j_idt452",widgetVar:"widget_formSmash_j_idt452",multiple:true}); Available from: 2014-03-30 Created: 2014-03-30 Last updated: 2017-05-03Bibliographically approved
##### In thesis

Newtonian spaces generalize first-order Sobolev spaces to abstract metric measure spaces. In this paper, we study regularity of Newtonian functions based on quasi-Banach function lattices. Their (weak) quasi-continuity is established, assuming density of continuous functions. The corresponding Sobolev capacity is shown to be an outer capacity. Assuming sufficiently high integrability of upper gradients, Newtonian functions are shown to be (essentially) bounded and (Hölder) continuous. Particular focus is put on the borderline case when the degree of integrability equals the “dimension of the measure”. If Lipschitz functions are dense in a Newtonian space on a proper metric space, then locally Lipschitz functions are proven dense in the corresponding Newtonian space on open subsets, where no hypotheses (besides being open) are put on these sets.

1. Sobolev-Type Spaces: Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay708831",{id:"formSmash:j_idt732:0:j_idt736",widgetVar:"overlay708831",target:"formSmash:j_idt732:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1171",{id:"formSmash:j_idt1171",widgetVar:"widget_formSmash_j_idt1171",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1224",{id:"formSmash:lower:j_idt1224",widgetVar:"widget_formSmash_lower_j_idt1224",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1225_j_idt1227",{id:"formSmash:lower:j_idt1225:j_idt1227",widgetVar:"widget_formSmash_lower_j_idt1225_j_idt1227",target:"formSmash:lower:j_idt1225:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});