liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Iterative Methods for Solving the Cauchy Problem for the Helmholtz EquationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2014. , 12 p.
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1593
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-105879DOI: 10.3384/diss.diva-105879ISBN: 978-91-7519-350-2 (print)OAI: oai:DiVA.org:liu-105879DiVA: diva2:711818
##### Public defence

2014-05-09, ACAS, A–huset, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

##### List of papers

The inverse problem of reconstructing the acoustic, or electromagnetic, field from inexact measurements on a part of the boundary of a domain is important in applications, for instance for detecting the source of acoustic noise. The governing equation for the applications we consider is the Helmholtz equation. More precisely, in this thesis we study the case where Cauchy data is available on a part of the boundary and we seek to recover the solution in the whole domain. The problem is ill-posed in the sense that small errors in the Cauchy data may lead to large errors in the recovered solution. Thus special regularization methods that restore the stability with respect to measurements errors are used.

In the thesis, we focus on iterative methods for solving the Cauchy problem. The methods are based on solving a sequence of well-posed boundary value problems. The specific choices for the boundary conditions used are selected in such a way that the sequence of solutions converges to the solution for the original Cauchy problem. For the iterative methods to converge, it is important that a certain bilinear form, associated with the boundary value problem, is positive definite. This is sometimes not the case for problems with a high wave number.

The main focus of our research is to study certain modifications to the problem that restore positive definiteness to the associated bilinear form. First we add an artificial interior boundary inside the domain together with a jump condition that includes a parameter μ. We have shown by selecting an appropriate interior boundary and sufficiently large value for μ, we get a convergent iterative regularization method. We have proved the convergence of this method. This method converges slowly. We have therefore developed two conjugate gradient type methods and achieved much faster convergence. Finally, we have attempted to reduce the size of the computational domain by solving well–posed problems only in a strip between the outer and inner boundaries. We demonstrate that by alternating between Robin and Dirichlet conditions on the interior boundary, we can get a convergent iterative regularization method. Numerical experiments are used to illustrate the performance of the methods suggested.

An invalid ISRN (LIU-TEK-LIC-2012:15) is stated on page 2. The ISRN belongs to the Licentiate thesis, published in 2012.

Available from: 2014-04-11 Created: 2014-04-11 Last updated: 2014-04-11Bibliographically approved1. Numerical Solution of the Cauchy Problem for the Helmholtz Equation$(function(){PrimeFaces.cw("OverlayPanel","overlay709791",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay709791",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. An alternating iterative procedure for the Cauchy problem for the Helmholtz equation$(function(){PrimeFaces.cw("OverlayPanel","overlay526240",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay526240",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. An accelerated alternating procedure for the Cauchy problem for the Helmholtz equation$(function(){PrimeFaces.cw("OverlayPanel","overlay711804",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay711804",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Robin–Dirichlet algorithms for the Cauchy problem for the Helmholtz equation$(function(){PrimeFaces.cw("OverlayPanel","overlay711803",{id:"formSmash:j_idt482:3:j_idt486",widgetVar:"overlay711803",target:"formSmash:j_idt482:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});