liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimising Stencil Thickness and Ink Film Deposit: An investigation about the preparation of thick film screen printing stencils and their influence on desired thick film ink or paste deposits
Stuttgart Media University – Hochschule der Medien (HdM), Stuttgart, Germany.
Stuttgart Media University – Hochschule der Medien (HdM), Stuttgart, Germany.
Stuttgart Media University – Hochschule der Medien (HdM), Stuttgart, Germany.
2011 (English)In: International Circle of Educational Institutes for Graphic Arts, ISSN 1868-0879, no 4, 6-17 p.Article in journal (Refereed) Published
Abstract [en]

It is very important to control the thickness of the ink deposit in screen printing of functional pastes – especially in the field of printed electronics. In general, it is the height of the conductive tracks that can be altered in order to control the ohmic resistance since the specific resistance of the deployed material, the base area and the length of the printed structure are pre-defined. The aim of this investigation is to detect the most significant parameters that influence the ink film deposition in order to establish a dry ink film layer on the substrate which ranges between 80 to 100 microns.

Place, publisher, year, edition, pages
2011. no 4, 6-17 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-106003OAI: oai:DiVA.org:liu-106003DiVA: diva2:712761
Available from: 2014-04-16 Created: 2014-04-16 Last updated: 2014-04-23Bibliographically approved
In thesis
1. Screen Printed Thermoelectric Devices
Open this publication in new window or tab >>Screen Printed Thermoelectric Devices
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Thermoelectric generators (TEG) directly convert heat energy into electrical energy. The impediments as to why this technology has not yet found extensive application are the low conversion efficiency and high costs per watt. On the one hand, the manufacturing process is a cost factor. On the other, the high-­‐priced thermoelectric (TE) materials have an enormous impact on the costs per watt. In this thesis both factors will be examined: the production process and the selection of TE materials. Technical screen printing is a possible way of production, because this method is very versatile with respect to the usable materials, substrates as well as printing inks. The organic conductor PEDOT:PSS offers reasonable thermoelectric properties and can be processed very well in screen printing. It was demonstrated by prototypes of fully printed TEGs that so-­‐called vertical printed TEGs are feasible using standard graphic arts industry processes. In addition, the problems that occur with print production of TEGs are identified. Finally, approaches to solve these problems are discussed.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 45 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1663
Keyword
Screen printing, thermoelectric generator, Seebeck effect, energy harvesting
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-106006 (URN)10.3384/lic.diva-106006 (DOI)978-­91-­7519-­323-­6 (print) (ISBN)
Presentation
K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping (English)
Opponent
Supervisors
Available from: 2014-04-16 Created: 2014-04-16 Last updated: 2014-04-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to article
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf