liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Screen printing into cavities of a thick insulating layer as a part of a fully printed thermoelectric generator
Stuttgart Media University, Hochschule der Medien (HdM), Stuttgart, Germany.
Stuttgart Media University, Hochschule der Medien (HdM), Stuttgart, Germany.
Stuttgart Media University, Hochschule der Medien (HdM), Stuttgart, Germany.
2011 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

Thermoelectric generators (TEG) convert thermal energy into electricity, directly [1]. The sophisticated and therefore expensive ways of producing such TEGs presently prevent the technology to enter new markets other than space missions or the combustion systems of cars [2]. A promising approach to reduce the costs per Watt is to print the TEG structures on flexible substrates to be able to affix the flexible TEG directly on the heat source or sink. This report describes the process of assembling a fully printed TEG especially the issues that arise when printing the intermediate insulating layers in a so called vertical layout of a TEG. As the layer thicknesses all are rather thick screen and stencil printing were used. When the cavities in the insulating layer are subsequently filled with the thermoelectric leg materials the electrical contact between the top and the bottom conductors of the TEG are established. However, the cavities must be filled properly to ensure a good electrical contact. For this reason, the flow behaviour of the thermoelectric materials must be optimized for printing.

Place, publisher, year, edition, pages
2011.
Keywords [en]
Seebeck effect, thermoelectric generator, waste energy harvesting, screen printing
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-106004OAI: oai:DiVA.org:liu-106004DiVA, id: diva2:712764
Conference
The 43rd annual conference of the International Circle of Educational Institutes for Graphic Arts, Technology and Management, September 19-23, Norrköping, Sweden
Available from: 2014-04-16 Created: 2014-04-16 Last updated: 2018-10-31Bibliographically approved
In thesis
1. Screen Printed Thermoelectric Devices
Open this publication in new window or tab >>Screen Printed Thermoelectric Devices
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Thermoelectric generators (TEG) directly convert heat energy into electrical energy. The impediments as to why this technology has not yet found extensive application are the low conversion efficiency and high costs per watt. On the one hand, the manufacturing process is a cost factor. On the other, the high-­‐priced thermoelectric (TE) materials have an enormous impact on the costs per watt. In this thesis both factors will be examined: the production process and the selection of TE materials. Technical screen printing is a possible way of production, because this method is very versatile with respect to the usable materials, substrates as well as printing inks. The organic conductor PEDOT:PSS offers reasonable thermoelectric properties and can be processed very well in screen printing. It was demonstrated by prototypes of fully printed TEGs that so-­‐called vertical printed TEGs are feasible using standard graphic arts industry processes. In addition, the problems that occur with print production of TEGs are identified. Finally, approaches to solve these problems are discussed.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 45
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1663
Keywords
Screen printing, thermoelectric generator, Seebeck effect, energy harvesting
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-106006 (URN)10.3384/lic.diva-106006 (DOI)9789175193236 (ISBN)
Presentation
K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping (English)
Opponent
Supervisors
Available from: 2014-04-16 Created: 2014-04-16 Last updated: 2017-12-15Bibliographically approved
2. Screen Printing Technology for Energy Devices
Open this publication in new window or tab >>Screen Printing Technology for Energy Devices
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using printing methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field.

Screen printing is a widely used process in printed electronics, as this process is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised.

The conversion and storage of energy became an increasingly important topic in recent years. Since regenerative energy sources, such as photovoltaics or wind energy, often supply energy intermittently, appropriate storage systems must be available. This applies to large installations for the power supply of society, but also in the context of autarkic sensors, such as those used in the Internet of Things or domestic/industrial automation. A combination of micro-energy converters and energy storage devices is an adequate concept for providing energy for such applications.

In this thesis the above mentioned keywords are addressed and the feasibility of printed thermoelectric energy converters and supercapacitors as energy storage devices are investigated. The efficiency of thermoelectric generators (TEG) is low, but in industrial environments, for example, a large amount of unused low temperature heat energy can be found. If the production costs of TEGs are low, conversion of this unused heat energy can contribute to increasing system efficiency.

Additionally, printing of supercapacitor energy storage devices increases the usability of the TEG. It is appropriate to use both components as complementary parts in an energy system.

Abstract [sv]

Den tekniska tillämpningen av skärm- och stencilutskrift har varit toppmoderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreativiteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria material, enkelt bortskaffande och ett enormt antal enheter på grund av produktionsprocessen är några av de framträdande nyckelord som hör till detta område.

Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom processen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras.

Energikonvertering och lagring har blivit ett allt viktigare ämne de senaste åren. Eftersom regenerativa energikällor, såsom fotovoltaik eller vindkraft, ofta levererar energi intermittent, måste lämpliga lagringssystem vara tillgängliga. Detta gäller stora installationer för samhällets strömförsörjning, men också inom ramen för autarkiska sensorer, som de som används i saker av saker eller inhemsk / industriell automation. En kombination av mikroenergiomvandlare och energilagringsenheter är ett lämpligt koncept för att tillhandahålla energi för sådana applikationer.

I denna avhandling behandlas ovan nämnda nyckelord. Genomförbarhet av tryckta termoelektriska energiomvandlare och superkapacitorer som energilagringsenheter undersöks. Effektiviteten hos termoelektriska generatorer (TEG) är låg, men i industriella miljöer kan exempelvis en stor mängd oanvänd låg temperatur värmeenergi hittas. Om produktionskostnaderna för TEG är låga kan konvertering av denna oanvända värmeenergi bidra till ökad systemeffektivitet. Dessutom ökar utskrift av superkapacitorer användbarheten hos TEG. Det är lämpligt att använda båda komponenterna.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 106
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1942
Keywords
screen printing, printed electronics, energy converters, energy storage
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-152425 (URN)10.3384/diss.diva-152425 (DOI)9789176852743 (ISBN)
Public defence
2019-03-15, Önnesjösalen, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2018-10-30 Created: 2018-10-30 Last updated: 2019-03-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Willfahrt, Andreas

Search in DiVA

By author/editor
Willfahrt, Andreas
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 292 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf