liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-temperature deposition of cubic BN: C films by unbalanced direct current magnetron sputtering of a B4C target
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2837-3656
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Show others and affiliations
1996 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 14, no 6, 3100-3107 p.Article in journal (Refereed) Published
Abstract [en]

Controllable-unbalanced de magnetron sputtering of a B4C target in mixed Ar-N-2 discharges has been used to deposit BN:C thin films with carbon concentrations in the range of 5-21 at, % on Si(001) substrates. The variation of the nitrogen gas consumption with nitrogen partial pressure was used to determine the sorption capacity of the sputtering source and was then correlated to the film discharge plasma density near the substrate in a wide range. Hence, the ion flux J(i) of primary Ar+ and N-2(+) ions accelerated to the substrate by an applied negative substrate bias could be varied while keeping the deposition flux J(n) (the sum of film building species, B, C, and N atoms) near constant. BN:C films were grown at large ion-to-neutral flux ratios 3 less than or equal to J(i)/J(n) less than or equal to 24, ion energies E(i) less than or equal to 500 eV, and substrate temperatures 150 less than or equal to T-s less than or equal to 350 degrees C. The phase and elemental composition of as-deposited BN:C films were characterized by Fourier transform infrared spectroscopy and wavelength dispersive x-ray spectroscopy, respectively. Deposition of cubic phase c-BN:C containing 5-7 at. % of C is demonstrated under conditions of low energy (110 eV) ion bombardment, a high ion-to-atom arrival rate ration (J(i)/J(n) similar to 24), and low growth temperatures (similar to 150 degrees C). (C) 1996 American Vacuum Society.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 1996. Vol. 14, no 6, 3100-3107 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-105980DOI: 10.1116/1.580178OAI: oai:DiVA.org:liu-105980DiVA: diva2:712781
Available from: 2014-04-16 Created: 2014-04-15 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ivanov, IvanHultman, LarsMünger, Peter

Search in DiVA

By author/editor
Ivanov, IvanHultman, LarsMünger, Peter
By organisation
Thin Film PhysicsThe Institute of TechnologyTheoretical Physics
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf