liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Regularity of solutions to the polyharmonic equation in general domains
University of Minnesota, MN 55408 USA .
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, The Institute of Technology.
2014 (English)In: Inventiones Mathematicae, ISSN 0020-9910, E-ISSN 1432-1297, Vol. 196, no 1, 0464- p.Article in journal (Refereed) Published
Abstract [en]

The present paper establishes boundedness of derivatives for the solutions to the polyharmonic equation of order 2m in arbitrary bounded open sets of , 2a parts per thousand currency signna parts per thousand currency sign2m+1, without any restrictions on the geometry of the underlying domain. It is shown that this result is sharp and cannot be improved in general domains. Moreover, it is accompanied by sharp estimates on the polyharmonic Green function.

Place, publisher, year, edition, pages
Springer Verlag (Germany) , 2014. Vol. 196, no 1, 0464- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-106126DOI: 10.1007/s00222-013-0464-1ISI: 000333160600001OAI: oai:DiVA.org:liu-106126DiVA: diva2:714041
Available from: 2014-04-25 Created: 2014-04-24 Last updated: 2017-12-05

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Maz´ya, Vladimir

Search in DiVA

By author/editor
Maz´ya, Vladimir
By organisation
Mathematics and Applied MathematicsThe Institute of Technology
In the same journal
Inventiones Mathematicae
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf