liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, The Institute of Technology.
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA.
Show others and affiliations
2015 (English)In: Structure, ISSN 0969-2126, E-ISSN 1878-4186, Vol. 23, no 12, p. 2267-2279Article in journal (Refereed) Published
Abstract [en]

Hierarchic phosphorylation and concomitant Pin1-mediated proline isomerization of the oncoprotein c-Myc controls its cellular stability and activity. However, the molecular basis for Pin1 recognition and catalysis of c-Myc and other multisite, disordered substrates in cell regulation and disease is unclear. By nuclear magnetic resonance, surface plasmon resonance, and molecular modeling, we show that Pin1 subdomains jointly pre-anchor unphosphorylated c-Myc1–88 in the Pin1 interdomain cleft in a disordered, or “fuzzy”, complex at the herein named Myc Box 0 (MB0) conserved region N-terminal to the highly conserved Myc Box I (MBI). Ser62 phosphorylation in MBI intensifies previously transient MBI-Pin1 interactions in c-Myc1–88 binding, and increasingly engages Pin1PPIase and its catalytic region with maintained MB0 interactions. In cellular assays, MB0 mutated c-Myc shows decreased Pin1 interaction, increased protein half-life, but lowered rates of Myc-driven transcription and cell proliferation. We propose that dynamic Pin1 recognition of MB0 contributes to the regulation of c-Myc activity in cells

Place, publisher, year, edition, pages
Cell Press , 2015. Vol. 23, no 12, p. 2267-2279
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-106184DOI: 10.1016/j.str.2015.10.010OAI: oai:DiVA.org:liu-106184DiVA, id: diva2:714463
Note

The previous status of this article was Manuscript and the original title was Pre-anchoring of Pin1 to unphosphorylated c-Myc in a dynamic complex affects c-Myc stability andactivity.

Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Cancer Foundation; Swedish Child Cancer Foundation; Carl Trygger foundation; LiU Cancer Research Network; Swedish Research Council; NCI [R01s CA129040, CA100855]

Available from: 2014-04-28 Created: 2014-04-28 Last updated: 2018-05-06Bibliographically approved
In thesis
1. Structural biology of transcriptional regulation in the c-Myc network
Open this publication in new window or tab >>Structural biology of transcriptional regulation in the c-Myc network
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The oncogene c-­‐Myc is overexpressed in many types of human cancers and regulation of c-­‐Myc expression is crucial in a normal cell. The intrinsically disordered N-­‐terminal transactivation domain interacts with a wide range of proteins regulating c-­‐Myc activity. The highly conserved Myc box I region includes residues Thr58 and Ser62, which are involved in the phosphorylation events that control c-­‐Myc degradation by ubiquitination. Aggressive cell growth, leading to tumor formation, occurs if activated c-­‐ Myc is not degraded by ubiquitination. Such events may be triggered by defects in the regulated network of interactions involving Pin1 and phospho-­‐dependent kinases.

In this thesis, the properties of the intrinsically disordered unphosphorylated c-­‐Myc1-­‐88 and its interaction with Bin1 are studied by nuclear magnetic resonance (NMR) spectroscopy and surface plasmon resonance (SPR). Furthermore, the interaction of Myc1-­‐88 with Pin1 is analyzed in molecular detail, both for unphosphorylated and Ser62 phosphorylated c-­‐Myc1-­‐88, providing a first molecular description of a disordered but specific c-­‐Myc complex. A detailed analysis of the dynamics and structural properties of the transcriptional activator TAF in complex with TBP, both by NMR spectroscopy and crystallography, provides insight into transcriptional regulation and how c-­‐Myc could interact with TBP. Finally, the structure of a novel N-­‐terminal domain motif in FKBP25, which we name the Basic Tilted Helix Bundle (BTHB) domain, and its binding to YY1, which also binds c-­‐Myc, is described. By investigating the structural and dynamic properties of c-­‐Myc and c-­‐Myc-­‐interacting proteins, this thesis thus provides further insight to the molecular basis for c-­‐Myc functionality in transcriptional regulation.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 70
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1584
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-106185 (URN)10.3384/diss.diva-106185 (DOI)9789175193700 (ISBN)
Public defence
2014-05-23, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2014-04-28 Created: 2014-04-28 Last updated: 2017-12-15Bibliographically approved
2. On protein structure, function and modularity from an evolutionary perspective
Open this publication in new window or tab >>On protein structure, function and modularity from an evolutionary perspective
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Om proteinstruktur, -function och modularitet ur en evolutionär synvinkel
Abstract [en]

We are compounded entities, given life by a complex molecular machinery. When studying these molecules we have to make sense of a diverse set of dynamical nanostructures with wast and intricate patterns of interactions. Protein polymers is one of the major groups of building blocks of such nanostructures which fold up into more or less distinct three dimensional structures. Due to their shape, dynamics and chemical properties proteins are able to perform a plethora of specific functions essential to all known cellular lifeforms.

The connection between protein sequence, translated into protein structure and in the continuation into protein function is well accepted but poorly understood. Malfunction in the process of protein folding is known to be implicated in natural aging, cancer and degenerative diseases such as Alzheimer's.

Protein folds are described hierarchically by structural ontologies such as SCOP, CATH and Pfam all which has yet to succeed in deciphering the natural language of protein function. These paradigmatic views centered on protein structure fail to describe more mutable entities, such as intrinsically disordered proteins (IDPs) which lack a clear defined structure.

As of 2012, about two thirds of cancer patients was predicted to survive past 5 years of diagnosis. Despite this, about a third do not survive and numerous of successfully treated patients suffer from secondary conditions due to chemotherapy, surgery and the like. In order to handle cancer more efficiently we have to better understand the underlying molecular mechanisms.

Elusive to standard methods of investigation, IDPs have a central role in pathology; dysfunction in IDPs are key factors in cellular system failures such as cancer, as many IDPs are hub regulators for major cell functions. These IDPs carry short conserved functional boxes, that are not described by known ontologies, which suggests the existence of a smaller entity. In an investigation of a pair of such boxes of c-MYC, a plausible structural model of its interacting with Pin1 emerged, but such a model still leaves the observer with a puzzle of understanding the actual function of that interaction.

If the protein is represented as a graph and modeled as the interaction patterns instead of as a structural entity, another picture emerges. As a graph, there is a parable from that of the boxes of IDPs, to that of sectors of allosterically connected residues and the theory of foldons and folding units. Such a description is also useful in deciphering the implications of specific mutations.

In order to render a functional description feasible for both structured and disordered proteins, there is a need of a model separate from form and structure. Realized as protein primes, patterns of interaction, which has a specific function that can be defined as prime interactions and context. With function defined as interactions, it might be possible that the discussion of proteins and their mechanisms is thereby simplified to the point rendering protein structural determination merely supplementary to understanding protein function.

Abstract [sv]

Människan byggs upp av celler, de i sin tur består av än mindre beståndsdelar; livets molekyler. Dessa fungerar som mekaniska byggstenar, likt maskiner och robotar som sliter vid fabrikens band; envar utförandes en absolut nödvändig funktion för cellens, och hela kroppens, fortsatta överlevnad. De av livets molekyler som beskrivs centralt i den här avhandling är proteiner, vilka i sin tur består utav en lång kedja, med olika typer av länkar, som likt garn lindar upp sig i ett nystan av en (mer eller mindre...) bestämd struktur som avgör dess roll och funktion i cellen.

Intrinsiellt oordnade proteiner (IDP) går emot denna enkla åskådning; de är proteiner som saknar struktur och beter sig mer likt spaghetti i vatten än en maskin. IDP är ändå funktionella och bär på centrala roller i cellens maskineri; exempel är oncoproteinet c-Myc som agerar "gaspedal" för cellen - fel i c-Myc's funktion leder till att cellerna löper amok, delar sig hejdlöst och vi får cancer.

Man har upptäckt att c-Myc har en ombytlig struktur vi inte kan se; studier av punktvisa förändringar, mutationer, i kedjan av byggstenar hos c-Myc visar att många länkar har viktiga roller i funktionen. Detta ger oss bättre förståelse om cancer men samtidigt är laboratoriearbetet både komplicerat och dyrt; här kan evolutionen vägleda oss och avslöja hemligheterna snabbare.

Molekylär evolution studeras genom att beräkna variation i proteinkedjan mellan besläktade arter som finns lagrade i databaser; detta visar snabbt, via nätverksanalys och grafteori, vilka delar av proteinet som är centrala och kopplade till varandra av nödvändighet för artens fortlevnad. På så vis hjälper evolutionen oss att förstå proteinfunktioner via modeller baserade på proteinernas interaktioner snarare än deras struktur.

Samma modeller kan nyttjas för att förstå dynamiska förlopp och skillnader mellan normala och patologiska varianter av proteiner; mutationer kan uppstå i vår arvsmassa som kan leda till sjukdom. Genom analys av proteinernas kopplingsnätverk i grafmodellerna kan man bättre förutsäga vilka mutationer som är farligare än andra. Dessutom har det visat sig att en sådan representation kan ge bättre förståelse för den normala funktionen hos ett protein än vad en proteinstruktur kan.

Här introduceras även konceptet proteinprimärer, vilket är en abstrakt representation av proteiner centrerad på deras interaktiva mönster, snarare än på partikulär form och struktur. Det är en förhoppning att en sådan representation skall förenkla diskussionen anbelangande proteinfunktion så till den grad att strukturbestämmelse av proteiner, som är en mycket kostsam och tidskrävande process, till viss mån kan anses vara sekundär i betydelse jämfört med funktionellt modellerande baserat på evolutionära data extraherade ur våra sekvensdatabaser.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 77
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1914
Keywords
bioinformatics, structure, biology, intrinsical, disorder, protein, sequence, evolution, mutation, epistasis, function, allostery, dynamics, simulation, prediction, graph, network, bioinformatik, struktur, biologi, strukturbiologi, intrinsiellt, oordnad, protein, sekvens, evolution, mutation, epistasis, funktion, allosteri, dynamik, simulation, prediktion, graf, nätverk
National Category
Bioinformatics and Systems Biology
Identifiers
urn:nbn:se:liu:diva-147697 (URN)10.3384/diss.diva-147697 (DOI)9789176853474 (ISBN)
Public defence
2018-06-05, Planck, Hus F, Linköpings universitet, Linköping, 14:00 (English)
Opponent
Supervisors
Note

In the electronic version of the dissertation, the corrections from both errata lists have been carried out.

Available from: 2018-05-23 Created: 2018-05-06 Last updated: 2018-05-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Helander, SaraMontecchio, MeriPilstål, RobertKuruvilla, JacobMohammed, JavedCristobal, SusanaLundström, PatrikWallner, BjörnSunnerhagen, Maria

Search in DiVA

By author/editor
Helander, SaraMontecchio, MeriPilstål, RobertKuruvilla, JacobMohammed, JavedCristobal, SusanaLundström, PatrikWallner, BjörnSunnerhagen, Maria
By organisation
ChemistryThe Institute of TechnologyBioinformaticsDivision of Cell BiologyFaculty of Health SciencesLearning, Aesthetics, Natural scienceFaculty of Educational SciencesFaculty of Science & Engineering
In the same journal
Structure
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf