liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Indoor 3D Mapping using Kinect
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Kartering av inomhusmiljöer med Kinect (Swedish)
Abstract [en]

In recent years several depth cameras have emerged on the consumer market, creating many interesting possibilities forboth professional and recreational usage. One example of such a camera is the Microsoft Kinect sensor originally usedwith the Microsoft Xbox 360 game console. In this master thesis a system is presented that utilizes this device in order to create an as accurate as possible 3D reconstruction of an indoor environment. The major novelty of the presented system is the data structure based on signed distance fields and voxel octrees used to represent the observed environment.

Abstract [sv]

Under de senaste åren har flera olika avståndskameror lanserats på konsumentmarkanden. Detta har skapat många intressanta applikationer både i professionella system samt för underhållningssyfte. Ett exempel på en sådan kamera är Microsoft Kinect som utvecklades för Microsofts spelkonsol Xbox 360. I detta examensarbete presenteras ett system som använder Kinect för att skapa en så exakt rekonstruktion i 3D av en innomhusmiljö som möjligt. Den främsta innovationen i systemet är en datastruktur baserad på signed distance fields (SDF) och octrees, vilket används för att representera den rekonstruerade miljön.

Place, publisher, year, edition, pages
2014. , 60 p.
Keyword [en]
Kinect, mapping, sparse voxel octree, signed distance function, pose estimation
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:liu:diva-106145ISRN: LiTH-ISY-EX--14/4753--SEOAI: oai:DiVA.org:liu-106145DiVA: diva2:716061
External cooperation
SAAB Vricon Systems AB
Subject / course
Computer Vision Laboratory
Presentation
2014-04-07, Algoritmen, B-huset, Linköpings universitet, 581 83 LINKÖPING, Linköping, 15:15 (Swedish)
Supervisors
Examiners
Available from: 2014-05-12 Created: 2014-04-26 Last updated: 2014-05-12Bibliographically approved

Open Access in DiVA

fulltext(2031 kB)1218 downloads
File information
File name FULLTEXT02.pdfFile size 2031 kBChecksum SHA-512
f6f20e7fdffd5a1258d8421738bf23b427b0ceaa7f580b0a731d2d03d1cc8b2a3aca9c5032727a74fcf1f21838e599e66060a6a5eeb00b308f8b8f128e3c1072
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bengtsson, Morgan
By organisation
Computer VisionThe Institute of Technology
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 1218 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf