liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Introducing of absorption cooling process in CHP systems: an opportunity for reduction of global CO2 emissions
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
2011 (English)In: Proceedings of ECOS 2011 - 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2011, 3105-3116 p.Conference paper, Published paper (Other academic)
Abstract [en]

The purpose of this research study is to examine the potential for reduction of global CO2 emissions (GECO2) by converting from vapour compression chillers to absorption chillers in Stockholm’s district cooling (DC) system and in Stockholm’s industrial sector. The analysis of the cooling production is made through optimizations in MODEST, a model framework developed for analysis of dynamic energy systems. The results show that more than 95% of the cooling demand that is currently met by compression chillers during the months from April to October should be produced by district heat (DH)-driven absorption cooling chillers in order to lower GECO2. As a consequence of this conversion, the utilization time of the combined heat and power (CHP) plants in Stockholm’s district heating (DH) system would be prolonged and at the same time the electricity used for compression cooling production would be reduced. Assuming coal condensing production as the marginal electricity production in the common electricity market and considering both the increase in electricity production and the reduction in electricity used, the potential for the reduction of GECO2 would be about 0.15 million tonnes annually. Rising cooling demand would make the introduction of absorption technology in the system even more interesting. If the comfort cooling demand in the region increases by 30%, electricity production in the system during the summer would be about 70% higher, which would lead to a reduction of GECO2 by 0.2 million tonnes annually compared with GECO2 today.

Place, publisher, year, edition, pages
2011. 3105-3116 p.
Keyword [en]
Absorption cooling, Carbon dioxide, CHP
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-106892OAI: oai:DiVA.org:liu-106892DiVA: diva2:719313
Conference
ECOS 2011 - 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 4-7 July, Novi Sad, Serbia
Available from: 2014-05-23 Created: 2014-05-23 Last updated: 2014-05-23Bibliographically approved
In thesis
1. With district heating toward a sustainable future: System studies of district heating and cooling that interact with power, transport and industrial sectors
Open this publication in new window or tab >>With district heating toward a sustainable future: System studies of district heating and cooling that interact with power, transport and industrial sectors
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this thesis is to identify measures which should be taken in DH systems (DHSs) in order to contribute to the development of the DHSs and other energy systems (especially transport, industrial and power sectors) toward sustainability.

Four business strategies were analysed: delivering excess heat from biofuel production industry to DHSs, conversion of industrial processes to DH, integration of biofuel production in DHSs and integration of DHdriven absorption cooling technology in DHSs. Delivering excess heat from biofuel production industry to DHSs was analysed with a focus on the biofuel production costs for four biofuel production technologies. Integration of biofuel production and integration of DH-driven absorption cooling technology in DHSs were analysed with a focus on Stockholm’s DHS, using an optimisation model framework called MODEST. When the conversion of industrial processes to DH was analysed, DHSs and industrial companies in Västra Götaland, Östergötland and Jönköping counties were used as case studies; a method for heat load analysis called MeHLA was used to analyse the effects on the local DHSs.

The results showed that when considering biomass an unlimited resource, by applying the abovementioned business strategies DH has a potential to reduce global fossil fuel consumption and global GHG emissions associated with power, industrial and transport sectors.

DH producers may contribute to the sustainable development of the  transport sector by buying excess heat from the biofuel production industry. This business strategy results in lower biofuel production costs, which promotes development of biofuel production technologies that are not yet commercial. Moreover, introduction of large-scale biofuel production into local DHSs enables development of local biofuel supply chains; this may facilitate the introduction of biofuel in the local transport sectors and subsequently decrease gasoline and fossil diesel use. Conversion of industrial processes from fossil fuels and electricity to DH is a business strategy which would make the industry less dependent on fossil fuels and fossil fuelbased electricity. DH may also contribute to the sustainable development of the industry by buying waste heat from industrial processes, since this strategy increases the total energy efficiency of the industrial processes and reduces production costs. Furthermore, DH has a possibility to reduce fossil fuel consumption and subsequently GHG emissions in the power sector by producing electricity in biomass- or waste-fuelled CHP plants.

When the marginal electricity is associated with high GHG emissions (e.g. when it is produced in coal-fired condensing power (CCP)) plants, the reduction of the marginal electricity production (due to the conversion of industrial processes from electricity to DH and due to the conversion of compression cooling to DHdriven absorption cooling) results in higher environmental benefits. On the other hand, the introduction of biofuel production into DHSs becomes less attractive from an environmental viewpoint, because the investments in biofuel production instead of in CHP production lead to lower electricity production in the DHSs. The increased DH use in industry and introduction of the biofuel production and DH-driven absorption cooling production into the DHSs lead to increased biomass use in the DHSs. Because of this, if biomass is considered a limited resource, the environmental benefits of applying these business strategies are lower or non-existent.

Abstract [sv]

Syftet med denna avhandling är att identifiera åtgärder som bör vidtas i FJV-system (FJVS) för att bidra till en hållbar utveckling av FJV och andra relaterade energisystem som transport, industri- och energisektorn.

Fyra affärsstrategier är analyserade: att leverera överskottsvärme från produktion av biobränsle för transportsektorn, konvertering av industriella processer till FJV, integration av biobränsleproduktion för transportsektorn i FJVS och integration av FJV-driven absorptionskylteknik i FJVS. Att leverera överskottsvärme från produktion av biobränsle till transportsektorn analyserades med fokus på kostnader för fyra olika produktionstekniker. Integration av biobränsleproduktion till transportsektorn och integration av FJV-driven absorptionskylteknik i FJVS analyserades på Stockholms FJVS med optimeringsmodellen MODEST. När konvertering av industriella processer till FJV analyserades, användes FJVS och industriföretag i Västra Götaland, Östergötlands och Jönköpings län som fallstudier. Metoden MeHLA som används för analys av värmebelastning tillämpades för att analysera effekterna på de lokala FJVS.

Resultaten från studierna visar att när biomassa anses vara en obegränsad resurs har FJV en potential att minska den globala konsumtionen av fossila bränslen och de globala utsläppen av växthusgaser som förknippas med transport-, industri- och energisektorn, for samtliga analyserade affärsstrategierna.

FJV producenter kan bidra till en hållbar utveckling av transportsektorn genom användningen av överskottsvärme från produktion av transportbiobränsle. Den analyserade affärsstrategin ger lägre produktionskostnader för transportbiobränsle vilket främjar utvecklingen av produktionsteknik som ännu inte är kommersiell. Dessutom möjliggörs utveckling av lokala försörjningskedjor av transportbiobränsle på grund av den storskaliga produktionen av transportbiobränsle i lokala FJVS. Detta kan sedan underlätta införandet av transportbiobränsle i lokala transporter och även minska användningen av bensin och fossil diesel. Konvertering av industriella processer från fossila bränslen och el till FJV är en affärsstrategi som skulle göra FJV-branschen mindre beroende av fossila bränslen. Att använda spillvärme från industriprocesser ökar den totala energieffektiviteten i de industriella processerna och minskar produktionskostnaderna. Genom att dessutom öka FJV-användningen inom industriella produktionsprocesser och genom att konvertera eldriven kompressionskyla till FJV driven komfortabsorptionskyla, minskar säsongsvariationerna av FJV lasten, vilket leder till ett bättre utnyttjande av produktionsanläggningar för FJV. Om produktionsanläggningarna för baslast i FJVS är kraftvärmeverk, leder dessa två affärsstrategier till en ökad elproduktion i FJVS.

När marginalproducerad el förknippas med höga utsläpp av växthusgaser (t.ex. när det produceras i koleldade kondenskraftverk), resulterar en minskning av den marginella elproduktionen (på grund av konvertering av industriella processer från el till FJV och på grund av konvertering eldriven kompressionskyla till FJV-driven absorptionkyla) i minskade globala emissioner av växthusgas. Om man däremot tittar på införandet av produktion av transportbiobränsle i FJVS är denna affärsstrategi mindre attraktiv ur ett miljöperspektiv. Orsaken till detta är att investering i produktion av transportbiobränsle istället för i kraftvärmeproduktion, leder till minskad elproduktion i FJVS. Den ökade FJV-användningen inom industrin och införandet av produktion av biobränsle för transportsektorn och FJV driven absorptionskylproduktion i FJVS leder till en ökad användning av biomassa i FJVS. När biomassa anses vara en begränsad resurs, är de miljömässiga fördelarna med att tillämpa dessa affärsstrategier relativt låga eller till och med obefintliga.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 109 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1601
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-106899 (URN)10.3384/diss.diva-106899 (DOI)978-91-7519-314-4 (ISBN)
Public defence
2014-06-13, ACAS, hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-05-23 Created: 2014-05-23 Last updated: 2015-11-06Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Djuric Ilic, DanicaTrygg, Louise

Search in DiVA

By author/editor
Djuric Ilic, DanicaTrygg, Louise
By organisation
Energy SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf