liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2014 (English)In: Pigment Cell & Melanoma Research, ISSN 1755-1471, E-ISSN 1755-148X, Vol. 27, no 3, p. 431-441Article in journal (Refereed) Published
Abstract [en]

The proteinase-activated receptor 1 (PAR-1) plays a central role in melanoma progression and its expression level is believed to correlate with the degree of cancer invasiveness. Here, we show that PAR-1 is post-transcriptionally regulated by miR-20b microRNA in human melanoma cells. PAR-1 was found to be expressed in metastatic melanoma cells but was barely detectable in primary melanoma. By transducing primary melanoma cells with a lentivirus containing a 3-UTR construct of PAR-1 mRNA, we could show that endogenous melanoma microRNAs interacted with PAR-1 3-UTR and silenced a fused luciferase reporter. Transfection of an inhibitor against miR-20b into primary melanoma cells reversed this process. Finally, transfection of miR-20b mimic into metastatic melanoma cells caused downregulation of the luciferase reporter. We conclude that miR-20b regulates expression of melanoma PAR-1 receptor, which may explain the differential expression of PAR-1 observed in human melanoma.

Place, publisher, year, edition, pages
Wiley , 2014. Vol. 27, no 3, p. 431-441
Keywords [en]
melanoma; metastasis; proteinase-activated receptor-1; gene expression regulation; microRNAs
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-106844DOI: 10.1111/pcmr.12217ISI: 000334170900014OAI: oai:DiVA.org:liu-106844DiVA, id: diva2:720131
Available from: 2014-05-28 Created: 2014-05-23 Last updated: 2018-09-06
In thesis
1. Counting and Tracking: Development and Use of New Methods for Detailed Analysis of Thrombus Formation
Open this publication in new window or tab >>Counting and Tracking: Development and Use of New Methods for Detailed Analysis of Thrombus Formation
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Blood platelets are a part of the complex system called haemostasis aimed at ensuring our blood’s continuous transport of oxygen and nutrients throughout the body. The transport is ensured by limiting blood loss due to vessel injury and in this process, the platelets form a plug in the damaged area, reinforced by the formation of fibrin. Similar mechanisms may cause thrombus formation, often triggered by atherosclerotic plaque rupture, causing vessel occlusion, embolism or ischemia, which may cause irreversible damage to the heart or the brain.

Platelet research is crucial for improved prevention and treatment of thrombotic disorders. For such research, flow chambers are an interesting tool for studies of platelet adhesion, aggregation and thrombus formation under similar flow conditions as in the blood vessels, which is important, as the flow affects the mechanisms involved in both haemostasis and thrombosis. Flow chambers can be designed for specific purposes, such as for the study of haemostasis at specific flow conditions or to evaluate drugs or biomaterials. In this thesis, our aim has been to improve the usefulness of in-vitro flow chambers and develop a more robust and informative image analysis of such experiments.

Initially, we introduced an internal control within each flow chamber experiment, thereby reducing the experimental variance caused by unknown factors. Furthermore, control and sample were thus exposed to identical experimental settings. By using platelet count as quantification of thrombus formation we introduce a method of analysis with increased or similar sensitivity to today’s standards. The platelet count method facilitated comparison of results obtained in different types of flow chambers by an absolute scale of measurement, independent of user settings. The platelet count method was further developed so that additional parameters could be analysed, providing more information about each individual platelet and the overall thrombus. The parameters analysed included platelet stability, height, movement and contraction. The method was used to evaluate how the pharmacokinetics of a reversible (ticagrelor) and irreversible (prasugrel) platelet ADP-receptor inhibitor affected the overall thrombus formation. Especially, how a non-inhibited platelet fraction, formed between drug administrations of irreversible inhibitors, affected thrombus formation. In addition, we sought to understand the regulation of the thrombin receptor, PAR1, expression in cancer cells. We found the microRNA miR20b to be antioncogenic through its downregulation of PAR1 expression.

This thesis contains numerous flow chamber experiments. However, for further use and full potential of the method increased standardisation is important. Our work regarding the quantification and analysis of flow chamber experiments will contribute to a more robust analysis and maybe even more important, provide new and detailed information on thrombus formation.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 54
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1639
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:liu:diva-150960 (URN)10.3384/diss.diva-150960 (DOI)9789176852231 (ISBN)
Public defence
2018-10-05, Berzeliussalen, Campus US, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2018-09-06 Created: 2018-09-06 Last updated: 2018-09-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Faxälv, LarsClaesson, KjerstiJönsson, Jan-IngvarOsman, Abdimajid

Search in DiVA

By author/editor
Faxälv, LarsClaesson, KjerstiJönsson, Jan-IngvarOsman, Abdimajid
By organisation
Division of Microbiology and Molecular MedicineFaculty of Health SciencesDepartment of Clinical Chemistry
In the same journal
Pigment Cell & Melanoma Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf