liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of anions on the morphology of Co3O4 nanostructures grown by hydrothermal method and their pH sensing application
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Show others and affiliations
2014 (English)In: Journal of Electroanalytical Chemistry, ISSN 1572-6657, Vol. 717-718, 78-82 p.Article in journal (Refereed) Published
Abstract [en]

A fast, reliable, accurate, precise and sensitive pH sensor device is highly demanding for the monitoring of pH in biological, clinical and food industry samples. In this research work, the effect of anions on the morphology of cobalt oxide (Co3O4) nanostructures is investigated using low temperature chemical approach for the growth. Different anions have shown visible effect on the morphology of Co3O4 nanostructures. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy techniques were used for the material characterization. This study has shown highly dense, uniform and good crystal quality of fabricated Co3O4 nanostructures. The nanostructures obtained from the cobalt chloride were used for the development of potentiometric pH sensor electrode. The pH sensor electrode showed excellent linearity and close to Nernstian response for the pH range of 3-13 with a sensitivity of -58.45 mV/pH. Moreover, the proposed sensor showed a fast response time of 53 s, and acceptable reducibility and repeatability. The highly sensitive and a fast time response of the proposed sensor device indicate its potential application for the monitoring of pH from real samples including biological fluids.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 717-718, 78-82 p.
Keyword [en]
Anion effect; Cobalt oxide nanostructures; Morphology; pH sensor; Potentiometric response
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-106984DOI: 10.1016/j.jelechem.2014.01.011ISI: 000335112200011OAI: oai:DiVA.org:liu-106984DiVA: diva2:721343
Available from: 2014-06-04 Created: 2014-06-02 Last updated: 2014-10-27Bibliographically approved
In thesis
1. Synthesis, Characterization and Applications of Metal Oxide Nanostructures
Open this publication in new window or tab >>Synthesis, Characterization and Applications of Metal Oxide Nanostructures
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main objective of nanotechnology is to build self-powered nanosystems that are ultrasmall in size, exhibit super sensitivity, extraordinary multi functionality, and extremely low power consumption. As we all know that 21st century has brought two most important challenges for us. One is energy shortage and the other is global warming. Now to overcome these challenges, it is highly desirable to develop nanotechnology that harvests energy from the environment to fabricate self-power and low-carbon nanodevices. Therefore a self-power nanosystem that harvests its operating energy from the environment is an attractive proposition. This is also feasible for nanodevices owing to their extremely low power consumption. One advantageous approach towards harvesting energy from the environment is the utilization of semiconducting piezoelectric materials, which facilitate the conversion of mechanical energy into electrical energy. Among many piezoelectric materials ZnO has the rare attribute of possessing both piezoelectric and semiconducting properties. But most applications of ZnO utilize either the semiconducting or piezoelectric property, and now it’s time to fully employ the coupled semiconducting-piezoelectric properties to form  the basis for electromechanically coupled nanodevices. Since wurtzite zinc oxide (ZnO) is structurally noncentral symmetric and has the highest piezoelectric tensor among tetrahedrally bonded semiconductors, therefore it becomes a promising candidate for energy harvesting applications. ZnO is relatively biosafe and biocompatible as well, so it can be used at large scale without any harm to the living environment.

The synthesis of another transition metal oxide known as Co3O4 is also important due to its potential usage in the material science, physics and chemistry fields. Co3O4 has been studied extensively due to low cost, low toxicity, the most naturally abundant, high surface area, good redox, easily tunable surface and structural properties. These significant properties enable Co3O4 fruitful for developing variety of nanodevices. Co3O4 nanostructures have been focused considerably in the past decade due to their high electro-chemical performance, which is essential for developing highly sensitive sensor devices.

I started my work with the synthesis of ZnO nanostructures with a focus to improve the amount of harvested energy by utilizing oxygen plasma treatment. Then I grow ZnO nanorods on different flexible substrates, in order to observe the effect of substrate on the amount of harvested energy. After that I worked on understanding the mechanism and causes of variation in the resulting output potential generated from ZnO nanorods. My next target belongs to an innovative approach in which AFM tip decorated with ZnO nanorods was utilized to improve the output energy. Then I investigated Co3O4 nanostructures though the effect of anions and utilized one of the nanostructure to develop a fast and reliable pH sensor. Finally to take the advantage of higher degree of redox chemistry of NiCo0O4 compared to the single phase of nickel oxide and cobalt oxide, a sensitive glucose sensor is developed by immobilizing glucose oxidase.

However, there were problems with the mechanical robustness, lifetime, output stability and environmental adaptability of such devices, therefore more work is going on to find out new ways and means in order to improve the performance of fabricated nanogenerators and sensors.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 71 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1610
Keyword
Aqueous chemical growth method, ZnO nanorods, Oxygen plasma treatment, Piezoelectric and mechanical properties, Atomic force microscope, Nanoindentation, Co3O4 nanostructures, Anions effect, pH sensor, NiCo2O4 nanostructures, Glucose sensor
National Category
Physical Sciences Nano Technology
Identifiers
urn:nbn:se:liu:diva-108894 (URN)10.3384/diss.diva-108894 (DOI)978-91-7519-265-9 (ISBN)
Public defence
2014-08-22, K 3, Kåkenhus, Campus Norrköping, Linköpings universitet, Linköping, 10:00 (English)
Opponent
Supervisors
Available from: 2014-07-11 Created: 2014-07-11 Last updated: 2014-08-18Bibliographically approved

Open Access in DiVA

Effect of anions on the morphology of Co3O4 nanostructures grown by hydrothermal method and their pH sensing application(1397 kB)836 downloads
File information
File name FULLTEXT01.pdfFile size 1397 kBChecksum SHA-512
1b033b4bce9026579fc31d83e533644bbc1f4a20181cfc769f26fb2514a64849593bcad0a8cf86af567054c098284a2aa7e03bf192414e051962993fdc9a97df
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Hussain, MushtaqueIbupoto, Zafar HussainAbbasi, Mazhar AliNur, OmerWillander, Magnus

Search in DiVA

By author/editor
Hussain, MushtaqueIbupoto, Zafar HussainAbbasi, Mazhar AliNur, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of TechnologyPhysics and Electronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 836 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 196 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf