liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt211",{id:"formSmash:upper:j_idt211",widgetVar:"widget_formSmash_upper_j_idt211",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt212_j_idt214",{id:"formSmash:upper:j_idt212:j_idt214",widgetVar:"widget_formSmash_upper_j_idt212_j_idt214",target:"formSmash:upper:j_idt212:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Coloring graphs from random lists of fixed sizePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 44, no 3, p. 317-327Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Wiley , 2014. Vol. 44, no 3, p. 317-327
##### Keyword [en]

random list; list coloring
##### National Category

Natural Sciences
##### Identifiers

URN: urn:nbn:se:liu:diva-107123DOI: 10.1002/rsa.20469ISI: 000333236500003OAI: oai:DiVA.org:liu-107123DiVA, id: diva2:722014
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt573",{id:"formSmash:j_idt573",widgetVar:"widget_formSmash_j_idt573",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt579",{id:"formSmash:j_idt579",widgetVar:"widget_formSmash_j_idt579",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt587",{id:"formSmash:j_idt587",widgetVar:"widget_formSmash_j_idt587",multiple:true});
Available from: 2014-06-05 Created: 2014-06-05 Last updated: 2017-12-05

Let G = G(n) be a graph on n vertices with maximum degree bounded by some absolute constant Delta. Assign to each vertex v of G a list L(v) of colors by choosing each list uniformly at random from all k-subsets of a color set C of size sigma(n). Such a list assignment is called a random (k,C)-list assignment. In this paper, we are interested in determining the asymptotic probability (as n -greater thaninfinity) of the existence of a proper coloring phi of G, such that phi(v)is an element of L(v) for every vertex v of G. We show, for all fixed k and growing n, that if sigma(n)=omega(n1/k2), then the probability that G has such a proper coloring tends to 1 as n -greater thaninfinity. A similar result for complete graphs is also obtained: if sigma(n)greater than= 1. 223n and L is a random (3,C)-list assignment for the complete graph K-n on n vertices, then the probability that K-n has a proper coloring with colors from the random lists tends to 1 as n -greater than infinity

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1814",{id:"formSmash:j_idt1814",widgetVar:"widget_formSmash_j_idt1814",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1902",{id:"formSmash:lower:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1902",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1903_j_idt1905",{id:"formSmash:lower:j_idt1903:j_idt1905",widgetVar:"widget_formSmash_lower_j_idt1903_j_idt1905",target:"formSmash:lower:j_idt1903:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});