liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of a pH Sensor Using Nanoporous Nanostructures of NiO
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-6235-7038
2014 (English)In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 14, no 9, 6699-6703 p.Article in journal (Refereed) Published
Abstract [en]

Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 +/- 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.

Place, publisher, year, edition, pages
American Scientific Publishers, 2014. Vol. 14, no 9, 6699-6703 p.
Keyword [en]
pH Sensor; Nickel Oxide; Nanoporous; Buffer Solution
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-107433DOI: 10.1166/jnn.2014.9373ISI: 000335873900028OAI: oai:DiVA.org:liu-107433DiVA: diva2:724351
Available from: 2014-06-12 Created: 2014-06-12 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ibupoto, Zafar HussainKhun, KimleangWillander, Magnus

Search in DiVA

By author/editor
Ibupoto, Zafar HussainKhun, KimleangWillander, Magnus
By organisation
Physics and ElectronicsThe Institute of Technology
In the same journal
Journal of Nanoscience and Nanotechnology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf