liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of deep brain stimulation systems
Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. (MINT)ORCID iD: 0000-0002-6896-1452
Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. (MINT)ORCID iD: 0000-0002-0012-7867
2014 (English)In: Poster Presentations, 2014, Vol. 29, 1173-1173 p., Suppl 1Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Objective: To quantitatively compare the electric field generated by voltage and current controlled deep brain stimulation systems.

Background: Traditionally deep brain stimulation (DBS) systems have used voltage control however more recently, current controlled systems have been approved to treat Parkinson's disease and related movement disorders. In the endeavor of understanding the behavior of DBS systems a common approach is the use of computer models suitable to simulate the electric field, current density and other related electric parameters.

Methods: 2D finite element models based on commercially available DBS systems have been built for each system: I. Model 3389, Medtronic Inc., USA for voltage control; and II. Model 6142, St Jude Medical Inc. USA for current control. The brain tissue has been simplified to homogeneous and isotropic medium. The electric settings correspond to a monopolar configuration, using one of the four contacts available as the active electrode and the outer boundary of the tissue as the reference. Three simulations were performed to mimic different stages of the leads implantation: a) an original stage where the brain tissue is considered as pure gray matter, b) an acute stage that simulates the leakage of cerebral spinal fluid immediately after the electrodes' insertion; and c) a chronic stage mimicking fibrous tissue created around the electrodes some weeks after implantation. Both systems were submitted to the same conditions using as active electrode the third contact from the tip of the lead. The comparison is based on the maximal distance reached by the isopotential of 0.2 V/mm.

Results: The simulations showed that voltage controlled stimulation systems are more susceptible to changes in the electrical conductivity of the medium i.e. change over time of the tissue around the electrode. This agrees with the adjustment of the stimulation amplitude often necessary a few weeks postoperatively. Current controlled stimulation in turn, presented a linear behavior of the distance reached at different stimulation amplitudes at all stages.

Conclusions: Current controlled stimulation might be a good option due to its linear behavior over time, nevertheless more studies including a more realistic brain model, different designs of DBS electrodes and different electric parameter, are needed to encourage the use of this type of systems.

Place, publisher, year, edition, pages
2014. Vol. 29, 1173-1173 p., Suppl 1
National Category
Other Medical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-107599DOI: 10.1002/mds.25914OAI: oai:DiVA.org:liu-107599DiVA: diva2:725760
Conference
The MDS 18th International Congress of Parkinson's Disease and Movement Disorders, June 8-12, 2014, Stockholm, Sweden
Available from: 2014-06-17 Created: 2014-06-17 Last updated: 2017-02-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Alonso, FabiolaWårdell, Karin

Search in DiVA

By author/editor
Alonso, FabiolaWårdell, Karin
By organisation
Biomedical InstrumentationThe Institute of Technology
Other Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 293 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf