liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polymer Arrays as a Novel Bio-sensing Method for Bacterial Detection
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2071-7768
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-1815-9699
2014 (English)In: 24th Anniversary World Congress on Biosensors – Biosensors 2014, Elsevier, 2014Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

A novel and cost-effective recognition method for rapid bacterial detection is reported. Rapid bacterial detection is a challenge for the food and pharmaceutical industries as well as in clinical diagnostics. There is a great necessity for replacement of conventional detection methods by new rapid alternatives. Identifying microorganisms based on their specific adhesive properties to different surfaces could lead to a fast diagnostic and novel bacterial detection tool. An array of conducting polymers, which have diverse physicochemical properties like hydrophobicity, thickness and roughness, have been designed and developed for use as the recognition element in a bacterial biosensor that can distinguish bacterial strains. Electrochemically synthesised polypyrrole was doped with different counter ions in order to fabricate bacterial recognition elements. Mid-exponential phase bacterial cells were exposed to the polymers for a fixed time and the adhering cells were stained by ethidium bromide and counted using a fluorescent microscope. The results show both that the number of adhesive bacterial cells of E. coli on each polymer surface is different and that this adhesive pattern is unique for the bacterial strains tested: A. faecalis and D. proteolyticus, show different adhesive patterns in similar experiments. The results showed that with only a few different polymers, it was possible to reliably discriminate an E. coli strain from three other bacterial strains. This forms the basis for an array-type device comprising a variety of dissimilar polymers to differentiate a broad range of bacterial strains. We expect the array, in combination with an appropriate transducer and pattern-recognition software, to provide a convenient and inexpensive biosensing device able to rapidly and specifically detect bacterial strains and also to have potential applications in whole-cell biosensors.

Place, publisher, year, edition, pages
Elsevier, 2014.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-108422OAI: oai:DiVA.org:liu-108422DiVA: diva2:730275
Conference
24th Anniversary World Congress on Biosensors – Biosensors 2014, 27-30 May 2014, Melbourne, Australia.
Available from: 2014-06-27 Created: 2014-06-27 Last updated: 2014-08-26

Open Access in DiVA

No full text

Other links

http://www.biosensors-congress.elsevier.com/

Authority records BETA

Golabi, MohsenJager, EdwinTurner, Anthony

Search in DiVA

By author/editor
Golabi, MohsenJager, EdwinTurner, Anthony
By organisation
Biosensors and BioelectronicsThe Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 273 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf