liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Hair as a Bioindicator for Inhalation of Uranium: A Study on Nuclear Fuel Fabrication Workers
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0002-4055-8688
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
2014 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Scalp hair is evaluated and compared with urine as a potential biomonitor following inhalation intake of uranium. The samples were collected among eight workers at a nuclear fuel fabrication factory and the sample concentrations of 234U and 238U were analyzed by α-spectrometry after radiochemical preparation using a TBP-based liquidliquid separation method. Personal air samplers (PAS) filters were also analyzed for determination of inhaled uranium activity.

The results show that there is a large day-to-day variation (7-70 Bq d-1) of the inhaled 234U activity over a 6 week period. A large variation is also seen for the 234U activity concentration among 12 urine samples collected over a 12 week period; (2-50 mBq kg-1). Four hair samples from the same subject and period showed less variation (100-240 mBq g-1) as they reflect the average excretion over a longer period than the periodic urine samples.

The total inhalation intake and excretion in urine and hair was obtained for two study subjects over a 6 week period. The uranium inhalation to urine and hair factors finh,u and finh,h were 0.0014 and 0.0002 respectively, given by calculations based on the measured PAS, urine and hair data. It has been demonstrated that scalp hair could be a valuable complement to urine as biomonitor of uranium intake.

Place, publisher, year, edition, pages
2014.
Keyword [en]
Hair, uranium, alpha spectroscopy
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:liu:diva-108890OAI: oai:DiVA.org:liu-108890DiVA: diva2:733711
Available from: 2014-07-11 Created: 2014-07-11 Last updated: 2014-07-11Bibliographically approved
In thesis
1. Chewing gum and human hair as retrospective dosimeters
Open this publication in new window or tab >>Chewing gum and human hair as retrospective dosimeters
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Retrospective dosimeters are sometimes needed after radiological/nuclear (RN) exposures to determine the doses to individuals. Conventional dosimeters may not be at hand or may not be applicable calling for alternative materials.

The possible exposure situations can be divided into external and internal; the radiation field stems either from outside the body or from a source within. This thesis investigates the possibility to use chewing gum and hair as retrospective dosimeters. The chewing gum would be used after an unexpected radiation event of external type whereas human hair is examined after chronic intake of uranium. Chewing gum containing xylitol and sorbitol was analyzed using electron paramagnetic resonance (EPR) and the hair was analyzed by alphaspectrometry following radiochemistry and by synchrotron radiation microbeam x-ray fluorescence (SR μ-XRF).

Xylitol and chewing gum (in this particular case, V6) are in the present work found to be valuable dosimeters after unexpected radiation events. The xylitol signal linearity with dose in the interval 0-10 Gy was confirmed (r2=1.00). The doses to the coating of the chewing gums were determined 4-6 days after irradiation with an uncertainty of less than 0.2 Gy (1 SD). Spectral dependence with time after exposure was found, but was, however, minimal between 4-8 days.

Hair was evaluated and compared with urine as biodosimeter after ingestion and inhalation intake of uranium. Concentrations of 234U and 238U and their activity ratios were measured in the hair, urine and drinking water sampled from 24 drilled bedrock well water users in Östergötland, Sweden, as well as among 8 workers at a nuclear fuel fabrication factory, Westinghouse Electric Sweden. The results show that there is a stronger correlation between the uranium concentrations in the drinking water of the well water and the users’ hair (r2 = 0.50) than with their urine (r2 = 0.21). There is also a stronger correlation between the 234U/238U activity ratios of water and hair (r2 = 0.91) than between water and urine (r2 = 0.56). The individual absorbed fraction of uranium, the ƒ value, calculated as the ratio between the excreted amount of uranium in urine and hair per day and the daily drinking water intake of uranium stretched from 0.002 to 0.10 with a median of 0.023. The uranium concentrations of the fuel factory workers’ hair and urine were also obtained as well as that of personal air sampler (PAS) filters for the determination of inhaled uranium activity. A large day-to-day variation (7-70 Bq d-1) of the inhaled 234U activity was seen over a 6 week period. Over a 12 week period the 234U activity concentration in urine was similarly seen to vary from 2 to 50 mBq kg-1. Four hair samples from the same subject and period showed less variation (100-240 mBq g-1). The uranium inhalation to urine and hair factors finh,u and finh,h were found to be 0.0014 and 0.0002 respectively given by calculations based on the measured PAS, urine and hair data from two individuals. The SR μ-XRF measurements showed that uranium is present in an outer layer of the hair shaft, about 10-15 μm wide. The  measurements also revealed particles containing uranium being present on the surface of unwashed hair shafts. However, the washed hair shafts showed few, if any, particles.

This thesis concludes that chewing gum and hair can be used as retrospective dosimeters after external radiation and after intake of uranium respectively.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 58 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1408
National Category
Radiology, Nuclear Medicine and Medical Imaging Medical Biotechnology
Identifiers
urn:nbn:se:liu:diva-108892 (URN)10.3384/diss.diva-108892 (DOI)978-91-7519-305-2 (ISBN)
Public defence
2014-08-29, Berzeliussalen, ingång 65 (HU) plan 9, Campus US, Linköpings universitet, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2014-07-11 Created: 2014-07-11 Last updated: 2014-09-08Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Israelsson, AxelPettersson, Håkan

Search in DiVA

By author/editor
Israelsson, AxelPettersson, Håkan
By organisation
Division of Radiological SciencesFaculty of Health SciencesDepartment of Radiation Physics
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf