LiU Electronic Press
Full-text not available in DiVA
Author:
de Leng, Daniel (Linköping University, Department of Computer and Information Science, Artificial Intelligence and Intergrated Computer systems) (Linköping University, The Institute of Technology) (KPLAB)
Heintz, Fredrik (Linköping University, Department of Computer and Information Science, Artificial Intelligence and Intergrated Computer systems) (Linköping University, The Institute of Technology) (KPLAB)
Title:
Towards On-Demand Semantic Event Processing for Stream Reasoning
Department:
Linköping University, Department of Computer and Information Science, Artificial Intelligence and Intergrated Computer systems
Linköping University, The Institute of Technology
Publication type:
Conference paper (Other academic)
Language:
English
In:
17th International Conference on Information Fusion
Conference:
17th International Conference on Information Fusion, 7-10 July 2014, Salamanca, Spain
Year of publ.:
2014
URI:
urn:nbn:se:liu:diva-108968
Permanent link:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-108968
Subject category:
Computer Science
Project:
CUAS, CADICS, CENIIT
Abstract(en) :

The ability to automatically, on-demand, apply pattern matching over streams of information to infer the occurrence of events is an important fusion functionality. Existing event detection approaches require explicit configuration of what events to detect and what streams to use as input. This paper discusses on-demand semantic event processing, and extends the semantic information integration approach used in the stream processing middleware framework DyKnow to incorporate this new feature. By supporting on-demand semantic event processing, systems can automatically configure what events to detect and what streams to use as input for the event detection. This can also include the detection of lower-level events as well as processing of streams. The semantic stream query language C-SPARQL is used to specify events, which can be seen as transformations over streams. Since semantic streams consist of RDF triples, we suggest a method to convert between RDF streams and DyKnow streams. DyKnow is integrated in the Robot Operating System (ROS) and used for example in collaborative unmanned aircraft systems missions.

Available from:
2014-08-04
Created:
2014-07-15
Last updated:
2014-09-05
Statistics:
23 hits