liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Fractional integration operators of variable order: continuity and compactness propertiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 287, no 8-9, 980-1000 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Wiley-VCH Verlagsgesellschaft, 2014. Vol. 287, no 8-9, 980-1000 p.
##### Keyword [en]

Riemann-Liouville operator; integration of variable order; compactness properties; entropy numbers
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-109274DOI: 10.1002/mana.201200337ISI: 000338487200009OAI: oai:DiVA.org:liu-109274DiVA: diva2:737140
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt406",{id:"formSmash:j_idt406",widgetVar:"widget_formSmash_j_idt406",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt413",{id:"formSmash:j_idt413",widgetVar:"widget_formSmash_j_idt413",multiple:true});
Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2014-09-09Bibliographically approved

Let alpha : [0, 1] -greater than R be a Lebesgue-almost everywhere positive function. We consider the Riemann-Liouville operator of variable order defined by (R-alpha(.) f) (t) := 1/Gamma(alpha(t)) integral(t)(0)(t - s)(alpha(t)-1) f(s) ds, t is an element of [0, 1], as an operator from L-p[0, 1] to L-q[0, 1]. Our first aim is to study its continuity properties. For example, we show that R-alpha(.) is always bounded (continuous) in L-p[0, 1] provided that 1 less than p less than= infinity. Surprisingly, this becomes false for p = 1. In order R-alpha(.) to be bounded in L-1 [0, 1], the function alpha(.) has to satisfy some additional assumptions. In the second, central part of this paper we investigate compactness properties of R-alpha(.). We characterize functions alpha(.) for which R-alpha(.) is a compact operator and for certain classes of functions alpha(.) we provide order-optimal bounds for the dyadic entropy numbers e(n)(R-alpha(.)).

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1144",{id:"formSmash:lower:j_idt1144",widgetVar:"widget_formSmash_lower_j_idt1144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1145_j_idt1147",{id:"formSmash:lower:j_idt1145:j_idt1147",widgetVar:"widget_formSmash_lower_j_idt1145_j_idt1147",target:"formSmash:lower:j_idt1145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});