liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure and electrical properties of Nb-Ge-C nanocomposite coatings
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Uppsala University, Sweden .
SP Technical Research Institute Sweden, Borås.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Impact Coatings AB, Linköping, Sweden .
Show others and affiliations
2014 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 4, 041509Article in journal (Refereed) Published
Abstract [en]

Nb-Ge-C nanocomposite thin films were deposited by dc magnetron sputtering using three elemental targets. The films consist of substoichiometric NbCx in a nanometer-thick matrix of amorphous C and Ge. Films with no Ge contain grains that are elongated in the growth direction with a (111) preferred crystallographic orientation. With the addition of ∼12 at. % Ge, the grains are more equiaxed and exhibit a more random orientation. At even higher Ge contents, the structure also becomes denser. The porous structure of the low Ge content films result in O uptake from the ambient. With higher C content in the films both the amount of amorphous C and C/Nb-ratio increases. The contact resistance was measured by four-point technique as a function of contact force between 0 and 10 N. The lowest contact resistance (1.7 mΩ) is obtained at 10 N. The resistivity varies between 470 and 1700 μΩ·cm depending on porosity and O content.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2014. Vol. 32, no 4, 041509
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-109236DOI: 10.1116/1.4882856ISI: 000338718400021OAI: oai:DiVA.org:liu-109236DiVA: diva2:737177
Note

At the time for thesis presentation publication was in status: Manuscript

Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Transition metal carbide nanocomposite and amorphous thin films
Open this publication in new window or tab >>Transition metal carbide nanocomposite and amorphous thin films
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact resistance and high mechanical strength. Electrical contacts are one example of application that has been of special interest in this thesis. Since some industrially important substrates used in electrical contacts soften at higher temperature, all films were deposited with dc magnetron sputtering at a low substrate temperature (200-350 °C).

I show that the electrical resistivity and mechanical properties of composites consisting of nanocrystalline NbC grains (nc-NbC) in a matrix of amorphous C (a-C) depend strongly on the amount of amorphous C. The best combination of hardness (23 GPa) and electrical resistivity (260 μΩ*cm) are found in films with ~15 at.% a-C phase. This is a higher hardness and lower resistivity than measured for the more well studied Ti-C system if deposited under similar conditions. The better results can be explained by a thinner matrix of amorphous C phase in the case of NbC. The nc-NbC/a-C is therefore interesting as a material in electrical contacts.

Si can be added to further control the structure and thereby the properties of binary Me-C systems. There are however, different opinions in the literature of whether Si is incorporated on the Ti or C site in the cubic NaCl (B1) structure of TiC. In order to understand how Si is incorporated in a Me-Si-C material I use a model system of epitaxial TiCx (x ~0.7). In this model system a few atomic percent of Si can be incorporated in the cubic TiC structure. The experimental results together with theoretical stability calculations suggest that the Si is positioned at the C sites forming Ti(Si,C)x. The calculation further shows a strong tendency for Si segregation, which is seen at higher Si contents in the experiments, where Si starts segregate out from the TiCx to the grain boundaries causing a loss of epitaxy.

If Si is added to an Nb-C nanocomposite, it hinders the grain growth and thus a reduced size of the NbC grains is observed. The Si segregates to the amorphous matrix forming a-SiC. At the same time the resistivity increases and the hardness is reduced. With even higher amounts of Si (>25 at.%) into the Nb-Si-C material, grain growth is no longer possible and the material becomes amorphous. In order to separate between effects from the addition of Si and the choice of transition metal I compare the Nb-Si-C system to already published results for the Zr-Si-C system. I find that the hardness of the material depends on the amount of strong Si-C bonds rather than the type of transition metal. The reduced elastic modulus is, however, dependent on the choice of transition metal. I therefore suggest that it is possible to make Me-Si-C films with high wear resistance by an appropriate choice of transition metal and composition.

Electron microscopy was of importance for determining amorphous structures of Nb-Si-C and Zr-Si-C at high Si contents. However, the investigations were obstructed by electron beam induced crystallization. Further investigations show that the energy transferred from the beam electrons to C and Si atoms in the material is enough to cause atomic displacements. The displacements cause volume fluctuations and thereby enhance the mobility of all the atoms in the material. The result is formation of MeC grains, which are stable to further irradiation.

Finally, I have studied substitution of Ge for Si in a ternary system looking at Nb-Ge-C thin films. I show that the films consist of nc-NbC/a-C/a-Ge and that Ge in a similar way to Si decreases the size of the crystalline NbC grains. However, a transition to a completely amorphous material is not seen even at high Ge contents (~30 at.%). Another dissimilarity is that while Si bonds to C and forms a matrix of a-SiC, Ge tends to bond to Ge.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 50 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1576
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-104929 (URN)10.3384/diss.diva-104929 (DOI)978-91-7519-398-4 (ISBN)
Public defence
2014-03-28, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-03-03 Created: 2014-03-03 Last updated: 2016-12-28Bibliographically approved

Open Access in DiVA

fulltext(1671 kB)229 downloads
File information
File name FULLTEXT01.pdfFile size 1671 kBChecksum SHA-512
a1a77d211a845b535a8f5157f4e26b6c53f2497a850bb520aaf3d26d879380d9c1371432157d260524013c97710fd02c1ffa904c7ff272186659975bf9056f51
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Tengstrand, OlofFlink, AxelEklund, PerHultman, Lars

Search in DiVA

By author/editor
Tengstrand, OlofFlink, AxelEklund, PerHultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 229 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 242 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf