liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Introducing Flexible and Synthetic Optical Networking: Planning and Operation Based on Network Function Programmable ROADMs
Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, The Institute of Technology.
High-Performance Networks Group, University of Bristol, Bristol, UK.
High-Performance Networks Group, University of Bristol, Bristol, UK.
High-Performance Networks Group, University of Bristol, Bristol, UK.
Show others and affiliations
2014 (English)In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 6, no 7, 635-648 p.Article in journal (Refereed) Published
Abstract [en]

Elastic optical networks are envisaged as promising solutions to fulfill the diverse bandwidth requirements for the emerging heterogeneous network applications. To support flexible allocation of spectrum resources the optical network nodes need to be agile. Among the different proposed solutions for elastic nodes, the one based on architecture of demand (AoD) exhibits considerable flexibility against the other alternatives. The node modules in the case of AoD are not hard-wired, but can be connected/disconnected to any input/output port according to the requirements. Thus, each AoD node and the network (fabricated with AoD nodes) as a whole acts like an optical field-programmable gate array. This flexibility inherent in AoD can be exploited for different purposes, such as for cost-efficient and energy-efficient design of the networks. This study looks into the cost-efficient network planning issue for synthetic networks implemented through AoD nodes. The problem is formalized as an integer linear programming formulation for presenting the optimal solution. Furthermore, a scalable and effective heuristic algorithm is proposed for cost-efficient design, and its performance is compared with the optimal solution. The designed networks with AoD nodes are further investigated for a dynamic scenario, and their blocking probability due to limited switching resources in the nodes is examined. To alleviate the blocking performance for the dynamic case, an efficient synthesis strategy along with a scheme for optimal placement of switching resources within the network nodes is presented. Extensive results show that 1) even at high loads, the network with AoD nodes achieves saving of switching modules up to 40% compared to the one with static reconfigurable optical add-drop multiplexers (ROADMs) through a proper network design, 2) by diminishing the spectrum selective switches the overall power consumption of the network decreases by more than 25% for high loads, and 3) for the dynamic scenario the blocking owing to the node modules constraint is alleviated significantly by slightly augmenting the switching devices and optimally deploying them within the network nodes.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2014. Vol. 6, no 7, 635-648 p.
Keyword [en]
Architecture on demand; Dynamic traffic; Energy-efficient; Flexible and synthetic optical networks; Network planning; Optical cross-connect; Routing and spectrum allocation
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:liu:diva-109232DOI: 10.1364/JOCN.6.000635ISI: 000338924800006OAI: diva2:737184
Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2015-08-12Bibliographically approved
In thesis
1. Planning and Provisioning Strategies for Optical Core Networks
Open this publication in new window or tab >>Planning and Provisioning Strategies for Optical Core Networks
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Optical communication networks are considered the main catalyst for the transformation of communication technology, and serve as the backbone of today's Internet. The inclusion of exciting technologies, such as, optical amplifiers, wavelength division multiplexing (WDM), and reconfigurable optical add/drop multiplexers (ROADM) in optical networks have made the cost of information transmission around the world negligible. However, to maintain the cost effectiveness for the growing bandwidth demand, facilitate faster provisioning, and provide richer sets of service functionality, optical networks must continue to evolve. With the proliferation of cloud computing the demand for a promptly responsive network has increased. Moreover, there are several applications, such as, real time multimedia services that can become realizable, depending on the achievable connection set-up time.

Given the high bandwidth requirements and strict service level specifications (SLSs) of such applications, dynamic on-demand WDM networks are advocated as a first step in this evolution. SLSs are metrics of a service level agreement (SLA), which is a contract between a customer and network operator. Apart from the other candidate parameters, the set-up delay tolerance, and connection holding-time have been defined as metrics of SLA. Exploiting these SLA parameters for on-line provisioning strategies exhibits a good potential in improving the overall network blocking performance. However, in a scenario where connection requests are grouped in different service classes, the provisioning success rate might be unbalanced towards those connection requests with less stringent requirements, i.e., not all the connection requests are treated in a fair way.

The first part of this thesis focuses on different scheduling strategies for promoting the requests belonging to smaller set-up delay tolerance service classes. The first part also addresses the problem of how to guarantee the signal quality and the fair provisioning of different service classes, where each class corresponds to a specified target of quality of transmission. Furthermore, for delay impatient applications the thesis proposes a provisioning approach, which employs the possibility to tolerate a slight degradation in quality of transmission during a small fraction of the holding-time.

The next essential phase for scaling system capacity and satisfying the diverse customer demands is the introduction of flexibility in the underlying technology. In this context, the new optical transport networks, namely elastic optical networks (EON) are considered as a worthwhile solution to efficiently utilize the available spectrum resources. Similarly, space division multiplexing (SDM) is envisaged as a promising technology for the capacity expansion of future networks. Among the alternative for flexible nodes, the architecture on demand (AoD) node has the capability to dynamically adapt its composition according to the switching and processing needs of the network traffic.

The second part of this thesis investigates the benefits of set-up delay tolerance for EON by proposing an optimization model for dynamic and concurrent connection provisioning. Furthermore, it also examines the planning aspect for flexible networks by presenting strategies that employ the adaptability inherent in AoD. Significant reduction in switching devices is attainable by proper planning schemes that synthesized the network by allocating switching device where and when needed while maximizing fiber switching operation. In addition, such a design approach also reduces the power consumption of the network. However, cost-efficient techniques in dynamic networks can deteriorate the network blocking probability owing to insufficient number of switching modules. For dynamic networks, the thesis proposes an effective synthesis provisioning scheme along with a technique for optimal placement of switching devices in the network nodes.

The network planning problem is further extended to multi-core-fiber (MCF) based SDM networks. The proposed strategies for SDM networks aim to establish the connections through proper allocation of spectrum and core while efficiently utilizing the spectrum resources. Finally, the optimal planning strategy for SDM networks is tailored to fit synthetic AoD based networks with the goal to optimally build each node and synthesize the whole network with minimum possible switching resources.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 84 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1645
National Category
Information Systems Computer and Information Science
urn:nbn:se:liu:diva-115908 (URN)10.3384/diss.diva-115908 (DOI)978-91-7519-115-7 (print) (ISBN)
Public defence
2015-04-30, Signalen, Hus B, Campus Valla, Linköping, 10:15 (English)
Available from: 2015-03-23 Created: 2015-03-23 Last updated: 2015-03-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Muhammad, AjmalForchheimer, Robert
By organisation
Information CodingThe Institute of Technology
In the same journal
Journal of Optical Communications and Networking
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 886 hits
ReferencesLink to record
Permanent link

Direct link