liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Nonequilibrium Charge Dynamics in Organic Solar Cells
Max Planck Institute Polymer Research, Germany .
Max Planck Institute Polymer Research, Mainz, Germany.
Max Planck Institute Polymer Research, Mainz, Germany.
Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, The Institute of Technology. Eindhoven University of Technology, MB, Netherlands.ORCID iD: 0000-0002-7104-7127
2014 (English)In: Advanced Energy Materials, ISSN 1614-6832, EISSN 1614-6840, Vol. 4, no 9Article in journal (Refereed) Published
Abstract [en]

The dynamics of charge carriers after their creation at, or near, an interface play a critical role in determining the efficiency of organic solar cells as they dictate, via mechanisms that are not yet fully understood, the pathways for charge separation and recombination. Here, a combination of ultrafast transient spectroscopy and kinetic Monte Carlo simulations based on a minimalistic model are used to examine various aspects of these charge dynamics in a typical donor-acceptor copolymer:methanofullerene blend. The observed rates of charge carrier energetic relaxation and recombination for a sequence of charge densities can be all consistently described in terms of the extended Gaussian disorder model. The physical picture that arises is a) that initial charge motion is highly diffusive and boosted by energetic relaxation in the disordered density of states and b) that mobile charge carriers dissociate from and re-associate into Coulombically associated pairs faster than they recombine, especially at early times. A simple analytical calculation confirms this picture and can be used to identify sub-Langevin recombination as the cause for quantitative deviations between the Monte Carlo calculations and the measured concentration dependence of the charge recombination.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2014. Vol. 4, no 9
National Category
Chemical Sciences
URN: urn:nbn:se:liu:diva-109189DOI: 10.1002/aenm.201301743ISI: 000338022300013OAI: diva2:737354
Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2015-03-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kemerink, Martijn
By organisation
Complex Materials and DevicesThe Institute of Technology
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link