liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A data-driven approach to diagnostics of repetitive processes in the distribution domain: Applications to gearbox diagnosticsin industrial robots and rotating machines
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
ABB Corporate Research, Västerås, Sweden.
ABB Corporate Research, Västerås, Sweden.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Show others and affiliations
2014 (English)In: Mechatronics (Oxford), ISSN 0957-4158, E-ISSN 1873-4006, Vol. 24, no 8, 1032-1041 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a data-driven approach to diagnostics of systems that operate in a repetitive manner. Considering that data batches collected from a repetitive operation will be similar unless in the presence of an abnormality, a condition change is inferred by comparing the monitored data against an available nominal batch. The method proposed considers the comparison of data in the distribution domain, which reveals information of the data amplitude. This is achieved with the use of kernel density estimates and the Kullback–Leibler distance. To decrease sensitivity to disturbances while increasing sensitivity to faults, the use of a weighting vector is suggested which is chosen based on a labeled dataset. The framework is simple to implement and can be used without process interruption, in a batch manner. The approach is demonstrated with successful experimental and simulation applications to wear diagnostics in an industrial robot gearbox and for diagnostics of gear faults in a rotating machine.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 24, no 8, 1032-1041 p.
National Category
Robotics
Identifiers
URN: urn:nbn:se:liu:diva-109332DOI: 10.1016/j.mechatronics.2014.01.013ISI: 000347499900014OAI: oai:DiVA.org:liu-109332DiVA: diva2:737658
Funder
VINNOVA
Available from: 2014-08-13 Created: 2014-08-13 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Modeling and Diagnosis of Friction and Wear in Industrial Robots
Open this publication in new window or tab >>Modeling and Diagnosis of Friction and Wear in Industrial Robots
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High availability and low operational costs are critical for industrial systems. While industrial equipments are designed to endure several years of uninterrupted operation, their behavior and performance will eventually deteriorate over time. To support service and operation decisions, it is important to devise methods to infer the condition of equipments from available data.

The monitoring of industrial robots is an important problem considered in this thesis. The main focus is on the design of methods for the detection of excessive degradations due to wear in a robot joint. Since wear is related to friction, an important idea for the proposed solutions is to analyze the behavior of friction in the joint to infer about wear. Based on a proposed friction model and friction data collected from dedicated experiments, a method is suggested to estimate wear-related effects to friction. As it is shown, the achieved estimates allow for a clear distinction of the wear effects even in the presence of large variations to friction associated to other variables, such as temperature and load.

In automated manufacturing, a continuous and repeatable operation of equipments is important to achieve production requirements. Such repetitive behavior of equipments is explored to define a data-driven approach to diagnosis. Considering data collected from a repetitive operation, an abnormality is inferred by comparing nominal against monitored data in the distribution domain. The approach is demonstrated with successful applications for the diagnosis of wear in industrial robots and gear faults in a rotating machine.

Because only limited knowledge can be embedded in a fault detection method, it is important to evaluate solutions in scenarios of practical relevance. A simulation based framework is proposed that allows for determination of which variables affect a fault detection method the most and how these variables delimit the effectiveness of the solution. Based on an average performance criterion, an approach is also suggested for a direct comparison of different methods. The ideas are illustrated for the robotics application, revealing properties of the problem and of different fault detection solutions.

An important task in fault diagnosis is a correct determination of presence of a condition change. An early and reliable detection of an abnormality is important to support service, giving enough time to perform maintenance and avoid downtime. Data-driven methods are proposed for anomaly detection that only require availability of nominal data and minimal/meaningful specification parameters from the user. Estimates of the detection uncertainties are also possible, supporting higher level service decisions. The approach is illustrated with simulations and real data examples including the robotics application.

Abstract [sv]

För industriella system är både hög tillgänglighet och låga driftskostnader avgörande. Industriella system är oftast utformad för att klara flera års oavbruten drift, men över tid kommer beteendet och prestandan så småningom att förändras. Det är därför viktigt att ta fram metoder som kan extrahera information från tillgänglig data och dra slutsatser om systemets beteende, som i sin tur används som stöd för beslut angående systemets fortsatta drift.Denna avhandling handlar om utformning och utvärdering av diagnostiska metoder för att stödja tids- och kostnadseffektiva beslut angående den fortsatta driften för systemet. I synnerhet studeras problemet med att upptäcka för höga nivåer av slitage i respektive led för en industrirobot. Eftersom slitage påverkar friktionen kan det vara en bra id{\'e} att analysera friktionen för att uppskatta hur stort slitage som har uppkommit. Baserat på en föreslagen friktionsmodell och friktionsdata från specialanpassade experiment föreslås en metod för att uppskatta slitagets omfattning. Metoden försöker anpassa modellen så att sannolikheten att mätningarna kommer från den föreslagna modellen maximeras. Det visar sig att tillförlitliga beräkningar av slitaget kan uppnås även vid stora variationer i belastningen på roboten samt temperaturen i robotens leder, vilket gör det möjligt att planera underhåll för roboten innan den går sönder.

Vidare undersöks hur ett systems repetitiva beteende, som är vanligt inom automatiserad tillverkning, kan utnyttjas för att skapa en metod för diagnos som endast använder befintlig data utan hjälp av någon modell. Med hjälp av data som har samlats in från en repetitiv process kan en förändring av processen upptäckas genom att jämföra data från systemet i felfri drift och befintlig drift. Metoden som föreslås utnyttjar den empiriska sannolikhetsfördelningen för systemet i felfri respektive befintlig drift. Det visar sig att metoden med framgång kan detektera slitage i lederna för en industrirobot samt växelfel i en roterande mekanism.I avhandlingen föreslås också metoder för feldetektering. Testet går ut på att man jämför två hypoteser mot varandra genom ett statistiskt ramverk. För att upptäcka en förändring av ett system är det naturligt att de två hypoteserna motsvarar ett system utan fel respektive ett system med fel. Det enda som förutsätts är att data från systemet utan fel är tillgängligt. En annan viktig del är att kunna jämföra olika diagnosmetoder för att se vilken som passar bäst till det aktuella problemet. Ett ramverk baserat på simuleringar har därför föreslagits för utvärdering av diagnosmetoder. Ramverket kan användas för att avgöra vilka variabler som påverkar metoden mest, hur man jämför olika metoder samt hur man bestämmer det effektiva användningsområdet för respektive metod. De föreslagna diagnosmetoderna och ramverket för utvärdering av diagnosmetoderna är generella men illustreras i avhandlingen på tillämpningar för industrirobotar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 208 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1617
National Category
Control Engineering
Identifiers
urn:nbn:se:liu:diva-109335 (URN)10.3384/diss.diva-109335 (DOI)978-91-7519-251-2 (ISBN)
Public defence
2014-09-26, Visionen, B building, Campus Valla, Linköping University, Linköping, 10:15 (English)
Opponent
Supervisors
Projects
Vinnova Excellence Center LINK-SIC
Funder
Vinnova
Available from: 2014-09-08 Created: 2014-08-13 Last updated: 2014-09-29Bibliographically approved

Open Access in DiVA

fulltext(1590 kB)204 downloads
File information
File name FULLTEXT01.pdfFile size 1590 kBChecksum SHA-512
6e37b996301bf49bcfce7a67ea451ac70d258403d743d3e14ae2e299d01b0364f2d61752b06e6869ef43a9a14a8c8fe6fc6d72ab0043d36ea85c38b5d4a91475
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Carvalho Bittencourt, AndréGunnarsson, SvanteNorrlöf, Mikael

Search in DiVA

By author/editor
Carvalho Bittencourt, AndréGunnarsson, SvanteNorrlöf, Mikael
By organisation
Automatic ControlThe Institute of Technology
In the same journal
Mechatronics (Oxford)
Robotics

Search outside of DiVA

GoogleGoogle Scholar
Total: 204 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1143 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf