liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ON THE CONNECTIVITY OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE
University of Tecn Federico Santa Maria, Chile .
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-9557-9566
2014 (English)In: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 39, no 2, 635-654 p.Article in journal (Refereed) Published
Abstract [en]

Let M be a handlebody of genus g greater than= 2. The space T(M), that parametrizes marked Kleinian structures on M up to isomorphisms, can be identified with the space MSg, of marked Schottky groups of rank g, so it carries a structure of complex manifold of finite dimension 3(g - 1). The space M(M) parametrizing Kleinian structures on M up to isomorphisms, can be identified with S-g, the Schottky space of rank g, and it carries the structure of a complex orbifold. In these identifications, the projection map pi: T(M) -greater than M(M) corresponds to the map from MSg, onto S-g that forgets the marking. In this paper we observe that the singular locus B(M) of M(M), that is, the branch locus of pi, has (i) exactly two connected components for g = 2, (ii) at most two connected components for g greater than= 4 even, and (iii) M(M) is connected for g greater than= 3 odd.

Place, publisher, year, edition, pages
Suomalainen Tiedeakatemia (Finnish Academy of Science and Letters) / Academia Scientiarum Fennica , 2014. Vol. 39, no 2, 635-654 p.
Keyword [en]
Moduli space; branch locus; Schottky space; Schottky group; handlebody; Riemann surface; Kleinian group; Fuchsian group
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-109890DOI: 10.5186/aasfm.2014.3942ISI: 000340017600011OAI: oai:DiVA.org:liu-109890DiVA: diva2:741552
Note

Funding Agencies|UTFSM [12.13.01]; [Fondecyt 1110001]

Available from: 2014-08-28 Created: 2014-08-28 Last updated: 2017-12-05

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Izquierdo, Milagros

Search in DiVA

By author/editor
Izquierdo, Milagros
By organisation
Mathematics and Applied MathematicsThe Institute of Technology
In the same journal
Annales Academiae Scientiarum Fennicae Mathematica
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf