liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancement Techniques for Lane PositionAdaptation (Estimation) using GPS- and Map Data
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

A lane position system and enhancement techniques, for increasing the robustnessand availability of such a system, are investigated. The enhancements areperformed by using additional sensor sources like map data and GPS. The thesiscontains a description of the system, two models of the system and two implementedfilters for the system. The thesis also contains conclusions and results oftheoretical and experimental tests of the increased robustness and availability ofthe system. The system can be integrated with an existing system that investigatesdriver behavior, developed for fatigue. That system was developed in aproject named Drowsi, where among others Volvo Technology participated.

Abstract [sv]

Ett filpositioneringssystem undersöks och förbättringstekniker för ökandet av robusthetoch tillgängligheten av ett sådant system genom att använda ytterligaresensorkällor som kartdata och GPS. Detta examensarbete presenterar beskrivningenav ett system, två modeller och två implementerade filter. Examensarbetetinnehåller också slutsatser och resultat av teoretiska och experimentella testersom plottar och grafer av ökad robusthet och tillgängligheten av systemet. Dettasystem kan bli integrerat med ett framtaget system som tittar på körrelaterat beteendevid trötthet. Systemet är utvecklat i ett projekt kallat Drowsi, där blandandra Volvo Technology deltog.

Place, publisher, year, edition, pages
2014. , 109 p.
Keyword [en]
Lane Position System, Sensor Fusion, Kalman Filter, Extended Kalman Filter, Dead Reckoning, Map Data, GPS
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-110812ISRN: LiTH-ISY-EX--14/4788--SEOAI: oai:DiVA.org:liu-110812DiVA: diva2:749036
External cooperation
Volvo Technology Corporation
Subject / course
Computer Vision Laboratory
Presentation
2014-08-04, Algoritmen, 10:00 (Swedish)
Supervisors
Examiners
Available from: 2014-09-23 Created: 2014-09-22 Last updated: 2014-09-23Bibliographically approved

Open Access in DiVA

fulltext(3054 kB)240 downloads
File information
File name FULLTEXT01.pdfFile size 3054 kBChecksum SHA-512
9181168dcea34852f3fd9cb134cb430e08300465f2b487ac4751ac9f1c2c925c93d788dfbac2472c99845911e2641c5195b82e19e45723669c19bedd545b6103
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Landberg, Markus
By organisation
Computer VisionThe Institute of Technology
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 240 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 388 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf