liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An azide functionalized oligothiophene ligand - A versatile tool for multimodal detection of disease associated protein aggregates
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Show others and affiliations
2015 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 63, 204-211 p.Article in journal (Refereed) Published
Abstract [en]

Ligands for identifying protein aggregates are of great interest as such deposits are the pathological hallmark of a wide range of severe diseases including Alzheimers and Parkinsons disease. Here we report the synthesis of an azide functionalized fluorescent pentameric oligothiophene that can be utilized as a ligand for multimodal detection of disease-associated protein aggregates. The azide functionalization allows for attachment of the ligand to a surface by conventional click chemistry without disturbing selective interaction with protein aggregates and the oligothiophene-aggregate interaction can be detected by fluorescence or surface plasmon resonance. In addition, a methodology where the oligothiophene ligand is employed as a capturing molecule selective for aggregated proteins in combination with an antibody detecting a distinct peptide/protein is also presented. We foresee that this methodology will offer the possibility to create a variety of multiplex sensing systems for sensitive and selective detection of protein aggregates, the pathological hallmarks of several neurodegenerative diseases.

Place, publisher, year, edition, pages
Elsevier , 2015. Vol. 63, 204-211 p.
Keyword [en]
Protein aggregates; Oligothiophene; Fluorescence; Surface plasmon resonance; Click chemistry
National Category
Chemical Sciences Biological Sciences
Identifiers
URN: urn:nbn:se:liu:diva-112169DOI: 10.1016/j.bios.2014.07.042ISI: 000343337000030PubMedID: 25089818OAI: oai:DiVA.org:liu-112169DiVA: diva2:764291
Note

Funding Agencies|Swedish Foundation for Strategic Research; Ehrling Persson Foundation; ERC Starting Independent Researcher grant (Project: MUMID)

Available from: 2014-11-18 Created: 2014-11-18 Last updated: 2017-12-05
In thesis
1. Asymmetric Oligothiophenes: Chemical Evolution of Multimodal Amyloid Ligands
Open this publication in new window or tab >>Asymmetric Oligothiophenes: Chemical Evolution of Multimodal Amyloid Ligands
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Luminescent conjugated polymers (LCPs) and luminescent conjugated oligothiophenes (LCOs) can be used as molecular probes to study diseases associated with protein aggregation. The conventionally used dyes to study and detect protein aggregates, denoted amyloid, have been Congo red (CR) and Thioflavin T (ThT). In contrast to these amyloid ligands, LCOs offer the possibility to detect aggregated proteinaceous species occurring at earlier stages of amyloid formation as well as to distinguish different morphotypes of protein aggregates. The interaction between the LCOs and the protein deposits can be studied by fluorescence spectroscopy and microscopy both in vitro and ex vivo. In this thesis we report the development of multimodal asymmetric LCOs that can be utilized with two novel techniques, Surface Plasmon Resonance (SPR) and Positron Emission Tomography (PET), to study the interaction between LCO and amyloid fibrils in real time. With SPR, we have been able to determine binding affinities between LCO and amyloid, and with PET we have shown that radiolabelled LCOs can be used as a non-invasive method to study amyloid deposits in vivo. In addition, by alteration of the backbone (change of thiophene units), and of adding different side chains functionalities, we have shown that the properties of the amyloid ligands have a huge impact of the binding to different stages or forms of protein aggregates. By making asymmetrical LCOs, which can be attached to a surface, we also foresee a methodology that will offer the possibility to create a sensitive and selective detection method, and maybe lead to a lab-on-a-chip-application.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 67 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1692
National Category
Chemical Sciences
Identifiers
urn:nbn:se:liu:diva-122278 (URN)10.3384/diss.diva-122278 (DOI)978-91-7685-987-2 (ISBN)
Public defence
2015-11-20, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2015-10-27 Created: 2015-10-27 Last updated: 2015-11-02Bibliographically approved

Open Access in DiVA

fulltext(2469 kB)202 downloads
File information
File name FULLTEXT01.pdfFile size 2469 kBChecksum SHA-512
8d5d99e7fbeaa69998ddd1a0668d765a2bddabefa9ab569bfb06b6b534021770915650aa7617b04a9f3b7f2e859abfc17b14962e0dcbe5bc65cefa4781247fb5
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Johansson, Leif B. G.Simon, RozalynBergström, GunnarEriksson, MikaelaMandenius, Carl-FredrikÅslund, AndreasNilsson, Peter

Search in DiVA

By author/editor
Johansson, Leif B. G.Simon, RozalynBergström, GunnarEriksson, MikaelaMandenius, Carl-FredrikÅslund, AndreasNilsson, Peter
By organisation
ChemistryThe Institute of TechnologyBiotechnology
In the same journal
Biosensors & bioelectronics
Chemical SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 202 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 335 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf