liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Computational Complexity of the Minimum Cost Homomorphism Problem on Three-element DomainsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
Number of Authors: 1
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Conference paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Dagstuhl: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik , 2014. 651-662 p.
##### Series

, Leibniz International Proceedings in Informatics, ISSN 1868-8969 ; 25
##### National Category

Computer Science
##### Identifiers

URN: urn:nbn:se:liu:diva-112916DOI: 10.4230/LIPIcs.STACS.2014.651ISBN: 978-3-939897-65-1OAI: oai:DiVA.org:liu-112916DiVA: diva2:773698
##### Conference

31st International Symposium on Theoretical Aspects of Computer Science (STACS-2014)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt406",{id:"formSmash:j_idt406",widgetVar:"widget_formSmash_j_idt406",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt413",{id:"formSmash:j_idt413",widgetVar:"widget_formSmash_j_idt413",multiple:true});
Available from: 2014-12-19 Created: 2014-12-19 Last updated: 2015-04-23
##### In thesis

In this paper we study the computational complexity of the extended minimum cost homomorphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint relations and cost functions that are allowed to appear in instances. A wide range of natural combinatorial optimisation problems can be expressed as extended Min-Cost-Homs and a classification of their complexity would be highly desirable, both from a direct, applied point of view as well as from a theoretical perspective.

The extended Min-Cost-Hom can be understood either as a flexible optimisation version of the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of the extended Min-Cost-Hom.

The study of VCSPs has recently seen remarkable progress. A complete classification for the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper and Živný [STOC’13]. However, understanding the complexity of languages that are not finitevalued appears to be more difficult. The extended Min-Cost-Hom allows us to study problematic languages of this type without having to deal with with the full generality of the VCSP. A recent classification for the complexity of three-element Min-Sol, Uppman [ICALP’13], takes a step in this direction. In this paper we generalise this result considerably by determining the complexity of three-element extended Min-Cost-Hom.

1. On Some Combinatorial Optimization Problems: Algorithms and Complexity$(function(){PrimeFaces.cw("OverlayPanel","overlay806491",{id:"formSmash:j_idt706:0:j_idt710",widgetVar:"overlay806491",target:"formSmash:j_idt706:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1144",{id:"formSmash:lower:j_idt1144",widgetVar:"widget_formSmash_lower_j_idt1144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1145_j_idt1147",{id:"formSmash:lower:j_idt1145:j_idt1147",widgetVar:"widget_formSmash_lower_j_idt1145_j_idt1147",target:"formSmash:lower:j_idt1145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});