liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A scalable custom simulation machine for the Bayesian Confidence Propagation Neural Network model of the brain
Kungl. Tekniska högskolan, KTH, Sweden.
Kungl. Tekniska högskolan, KTH, Sweden.
Kungl. Tekniska högskolan, KTH, Sweden.
Kungl. Tekniska högskolan, KTH, Sweden.
Show others and affiliations
2014 (English)In: Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific, IEEE , 2014, 578-585 p.Conference paper, Published paper (Refereed)
Abstract [en]

A multi-chip custom digital super-computer called eBrain for simulating Bayesian Confidence Propagation Neural Network (BCPNN) model of the human brain has been proposed. It uses Hybrid Memory Cube (HMC), the 3D stacked DRAM memories for storing synaptic weights that are integrated with a custom designed logic chip that implements the BCPNN model. In 22nm node, eBrain executes BCPNN in real time with 740 TFlops/s while accessing 30 TBs synaptic weights with a bandwidth of 112 TBs/s while consuming less than 6 kWs power for the typical case. This efficiency is three orders better than general purpose supercomputers in the same technology node.

Place, publisher, year, edition, pages
IEEE , 2014. 578-585 p.
Series
Asia and South Pacific Design Automation Conference Proceedings, ISSN 2153-6961
Keyword [en]
DRAM chips;belief networks;biomedical electronics;brain;mainframes;medical computing;neural chips;neurophysiology;parallel machines;3D stacked DRAM memories;BCPNN model;Bayesian confidence propagation neural network model;custom designed logic chip;eBrain;general purpose supercomputers;human brain;hybrid memory cube;multichip custom digital supercomputer;scalable custom simulation machine;synaptic weights;technology node;Aggregates;Bandwidth;Brain modeling;Computational modeling;Delays;Random access memory;Three-dimensional displays
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-114646DOI: 10.1109/ASPDAC.2014.6742953ISI: 000350791700104Scopus ID: 2-s2.0-84897883326ISBN: 978-1-4799-2816-3 (print)OAI: oai:DiVA.org:liu-114646DiVA: diva2:791671
Conference
The 19th Asia and South Pacific Design Automation Conference (ASP-DAC), January 20-23, 2014, Singapore
Available from: 2015-03-02 Created: 2015-03-02 Last updated: 2015-04-23

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Svensson, Christer

Search in DiVA

By author/editor
Svensson, Christer
By organisation
Electronic DevicesThe Institute of Technology
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf