liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and magnetic properties of Pr0.57Ca0.43MnO3 nanoparticles
Nanjing University, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2582-1740
Nanjing University, Peoples R China.
Nanjing University, Peoples R China.
Show others and affiliations
2007 (English)In: Materials Science & Engineering: B. Solid-state Materials for Advanced Technology, ISSN 0921-5107, E-ISSN 1873-4944, Vol. 136, no 1, 96-100 p.Article in journal (Refereed) Published
Abstract [en]

Pr0.57Ca0.43MnO3 nanoparticles with an average particle size of similar to 20 nm have been synthesized using hydrothermal method in combination with post-annealing, and characterized using X-ray diffraction, X-ray photoelectron spectrometer, high-resolution transmission electron microscopy and superconducting quantum interference device magnetometery. The results show that the hydrothermal synthesis of Pr1-xCaxMnO3 compound below 240 degrees C is difficult. The Pr0.57Ca0.43MnO3 nanoparticles obtained by annealing the hydrothermal products at 900 degrees C for 2 h present an orthorhombic perovskite structure with the same lattice as bulk Pr0.6Sr0.4MnO3. Magnetic characterization reveals that the low-temperature antiferromagnetic and charge ordering transitions identified in bulk Pr0.57Ca0.43MnO3 are completely suppressed in the nanoparticles, while a ferromagnetic transition occurs at -110 K. The spin-freezing behavior at low temperature for the Pr0.57Ca0.43MnO3 nanoparticles is demonstrated. (c) 2006 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier , 2007. Vol. 136, no 1, 96-100 p.
Keyword [en]
perovskite manganese oxides; nanomaterials; magnetic properties; charge ordering
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-115717DOI: 10.1016/j.mseb.2006.09.008ISI: 000243834200019OAI: oai:DiVA.org:liu-115717DiVA: diva2:796080
Available from: 2015-03-18 Created: 2015-03-18 Last updated: 2017-12-04

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Gao, Feng

Search in DiVA

By author/editor
Gao, Feng
By organisation
Biomolecular and Organic ElectronicsThe Institute of Technology
In the same journal
Materials Science & Engineering: B. Solid-state Materials for Advanced Technology
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf